Article

Acute treatment with the 5-HT1A receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma

Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States.
Behavioural Brain Research (Impact Factor: 3.39). 03/2007; 177(2):186-94. DOI: 10.1016/j.bbr.2006.11.036
Source: PubMed

ABSTRACT Acute treatment with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) or chronic environmental enrichment (EE) hasten behavioral recovery after experimental traumatic brain injury (TBI). The aim of this study was to determine if combining these interventions would confer additional benefit. Anesthetized adult male rats received either a cortical impact or sham injury followed 15min later by a single intraperitoneal injection of 8-OH-DPAT (0.5mg/kg) or saline vehicle (1.0mL/kg) and then randomly assigned to either enriched or standard (STD) housing. Behavioral assessments were conducted utilizing established motor and cognitive tests on post-injury days 1-5 and 14-18, respectively. Hippocampal CA(1)/CA(3) neurons were quantified at 3 weeks. Both 8-OH-DPAT and EE attenuated CA(3) cell loss. 8-OH-DPAT enhanced spatial learning in a Morris water maze (MWM) as revealed by differences between the TBI+8-OH-DPAT+STD and TBI+VEHICLE+STD groups (P=0.0014). EE improved motor function as demonstrated by reduced time to traverse an elevated narrow beam in both the TBI+8-OH-DPAT+EE and TBI+VEHICLE+EE groups versus the TBI+VEHICLE+STD group (P=0.0007 and 0.0016, respectively). EE also facilitated MWM learning as evidenced by both the TBI+8-OH-DPAT+EE and TBI+VEHICLE+EE groups locating the escape platform quicker than the TBI+VEHICLE+STD group (P's<0.0001). MWM differences were also observed between the TBI+8-OH-DPAT+EE and TBI+8-OH-DPAT+STD groups (P=0.0004) suggesting that EE enhanced the effect of 8-OH-DPAT. However, there was no difference between the TBI+8-OH-DPAT+EE and TBI+VEHICLE+EE groups. These data replicate previous results from our laboratory showing that both a single systemic administration of 8-OH-DPAT and EE improve recovery after TBI and extend those findings by elucidating that the combination of treatments in this particular paradigm did not confer additional benefit. One explanation for the lack of an additive effect is that EE is a very effective treatment and thus there is very little room for 8-OH-DPAT to confer additional statistically significant improvement.

Download full-text

Full-text

Available from: Anthony E. Kline, Jan 06, 2015
0 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental enrichment (EE) increases cortical weight, neuronal density, dendritic branching, and angiogenesis, all of which may be critical for functional recovery following insult. Our study was designed to determine possible benefits of pre-exposure to EE in preventing functional deficits following traumatic brain injury (TBI) to the prefrontal cortex. To examine the benefit of EE, adult male rats were placed in an enriched environment for 15 days. Enrichment was provided through social interaction, exercise, olfactory stimulation, and new objects/toys to explore. Following enrichment, experimental and age-matched controls were subjected to a moderate medial prefrontal cortex injury via controlled cortical impact (CCI). After 1 week recovery, animals were behaviorally tested to assess memory, anxiety, and sensory neglect. Lesion-induced deficits in spatial memory [Morris water maze (MWM)] were significantly attenuated in EE pre-exposed rats 18-21 days following injury. In addition, TBI-induced sensory neglect was significantly reduced in EE rats relative to non-enriched animals. No differences in anxiety-like behavior on the elevated plus maze (EPM) were detected. The behavioral data suggest that EE is neuroprotective when applied prior to TBI, resulting in improved recovery following injury.
    Frontiers in Behavioral Neuroscience 05/2013; 7:44. DOI:10.3389/fnbeh.2013.00044 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: De novo hippocampal neurogenesis contributes to functional recovery following traumatic brain injury (TBI). Enriched environment (EEN) can improve the outcome of TBI by positively affecting neurogenesis. Blast induced traumatic brain injury (bTBI) characterized by memory impairment and increased anxiety levels, is a leading cause of chronic disability among soldiers. Using a rodent model of bTBI we asked: (a) whether long-term exposure to EEN after injury can ameliorate behavioral abnormalities and (b) what the effects of EEN are at the molecular and cellular levels and on de novo neurogenesis. We found that housing injured animals in EEN resulted in significantly improved spatial memory while animals in normal housing (NH) showed persistent memory impairment. VEGF and Tau protein but not Interleukin-6 (IL-6) levels were normalized in the dorsal hippocampus (DHC) of EEN rats while all three markers remained elevated in NH rats. Interestingly, after peaking at 6 weeks post-injury, anxiety returned to normal levels at 2 months independent of housing conditions. Housing animals in EEN had no significant effect on VEGF and Tau protein levels in the ventral hippocampus (VHC) and the amygdala (AD). We also found that EEN reduced IL-6 and IFNγ levels in the VHC; these markers remained elevated following NH. We observed an increase in GFAP and DCX immunoreactivities in the VHC of NH animals at 2 months post-injury. Conversely, injured animals housed in EEN showed no increase in GFAP or DCX immunoreactivity in their VHC. In summary, long-term exposure of injured animals to EEN appears to play a positive role in the restoration of memory functions but not on anxiety, which returned to normal levels after a significant period of time. Cellular and molecular changes in response to EEN appear to be a part of neurogenesis-independent as well as dependent recovery processes triggered by bTBI.
    Frontiers in Neuroscience 04/2011; 5:42. DOI:10.3389/fnins.2011.00042
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When provided individually, both the serotonin (5-HT(1A))-receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and environmental enrichment (EE) enhance behavioral outcome and reduce histopathology after experimental traumatic brain injury (TBI). The aim of this study was to determine whether combining these therapies would yield greater benefit than either used alone. Anesthetized adult male rats received a cortical impact or sham injury and then were randomly assigned to enriched or standard (STD) housing, where either 8-OH-DPAT (0.1 mg/kg) or vehicle (1.0 mL/kg) was administered intraperitoneally once daily for 3 weeks. Motor and cognitive assessments were conducted on post-injury days 1-5 and 14-19, respectively. CA1/CA3 neurons and choline acetyltransferase-positive (ChAT(+)) medial septal cells were quantified at 3 weeks. 8-OH-DPAT and EE attenuated CA3 and ChAT(+) cell loss. Both therapies also enhanced motor recovery, acquisition of spatial learning, and memory retention, as verified by reduced times to traverse the beam and to locate an escape platform in the water maze, and a greater percentage of time spent searching in the target quadrant during a probe trial in the TBI + STD + 8-OH-DPAT, TBI + EE + 8-OH-DPAT, and TBI + EE + vehicle groups versus the TBI + STD + vehicle group (p ≤ 0.0016). No statistical distinctions were revealed between the TBI + EE + 8-OH-DPAT and TBI + EE + vehicle groups in functional outcome or CA1/CA3 cell survival, but there were significantly more ChAT(+) cells in the former (p = 0.003). These data suggest that a combined therapeutic regimen of 8-OH-DPAT and EE reduces TBI-induced ChAT(+) cell loss, but does not enhance hippocampal cell survival or neurobehavioral performance beyond that of either treatment alone. The findings underscore the complexity of combinational therapies and of elucidating potential targets for TBI.
    Journal of neurotrauma 10/2010; 27(11):2021-32. DOI:10.1089/neu.2010.1535 · 3.97 Impact Factor