Article

Canadian Association of Neurosciences Review: learning at a snail's pace.

Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques (Impact Factor: 1.33). 12/2006; 33(4):347-56.
Source: PubMed

ABSTRACT While learning and memory are related, they are distinct processes each with different forms of expression and underlying molecular mechanisms. An invertebrate model system, Lymnaea stagnalis, is used to study memory formation of a non-declarative memory. We have done so because: (1) We have discovered the neural circuit that mediates an interesting and tractable behaviour; (2) This behaviour can be operantly conditioned and intermediate-term and long-term memory can be demonstrated; and (3) It is possible to demonstrate that a single neuron in the model system is a necessary site of memory formation. This article reviews how Lymnaea has been used in the study of behavioural and molecular mechanisms underlying consolidation, reconsolidation, extinction and forgetting.

0 Bookmarks
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This research examined the roles played by the ventromedial orbital prefrontal cortex (OPFC) and the infralimbic/prelimbic prefrontal cortex (I/P PFC) during discriminative fear conditioning. The first experiment included nine rats with bilateral lesions to the I/P PFC, an additional nine with OPFC lesions, and eight sham lesion controls. Behavioural analysis was conducted using a discriminative fear conditioning to context task 10 days after surgery. Results indicate that lesions to ventromedial orbital prefrontal cortex result in generalized fear and impaired extinction. In contrast, infralimbic/prelimbic cortical lesioned animals exhibit appropriate fear response patterns and extinction, but show a specific impairment in spontaneous recovery. To ascertain why I/P PFC lesion rats did not exhibit spontaneous recovery, a second experiment was conducted. All procedures in the second experiment were identical to the first except a decay period was employed in place of extinction training. Results from the second experiment indicate that the difficulty retrieving the extinguished association is related to extinction processes and not decay. Taken together, these findings suggest that OPFC and I/P PFC have distinct roles in associative processes necessary for discriminative fear conditioning, extinction, and spontaneous recovery. These results further implicate OPFC and I/P PFC in the pathology underlying generalized anxiety disorder.
    Experimental Brain Research 06/2010; 203(2):285-97. · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Memory is the ability to store, retain, and later retrieve learned information. Long-term memory (LTM) formation requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. Several components of these processes have already been identified. However, due to the complexity of the memory formation process, there likely remain many yet to be identified proteins involved in memory formation and persistence. Here we use a quantitative proteomic method to identify novel memory-associated proteins in neural tissue taken from animals that were trained in vivo to form a long-term memory. We identified 8 proteins that were significantly up-regulated, and 13 that were significantly down-regulated in the LTM trained animals as compared to two different control groups. In addition we found 19 proteins unique to the trained animals, and 12 unique proteins found only in the control animals. These results both confirm the involvement of previously identified memory proteins such as: protein kinase C (PKC), adenylate cyclase (AC), and proteins in the mitogen-activated protein kinase (MAPK) pathway. In addition these results provide novel protein candidates (e.g. UHRF1 binding protein) on which to base future studies.
    Molecular Brain 03/2010; 3:9. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The freshwater snail Lymnaea stagnalis (L.) is considered a calciphile and exhibits reduced growth and survival in environments containing less than 20 mg/l environmental calcium. Although it has no apparent effect on survival at 20 mg/l, reducing environmental calcium increases metabolic demand, and as such we consider that this level of calcium acts as a stressor on the snail. We exposed snails to acute periods of low environmental calcium and tested their ability to form intermediate-term memory (ITM) and long-term memory (LTM) following one trial operant conditioning (1TT) to reduce aerial respiratory activity in hypoxic conditions. We also assessed whether there were changes in the electrophysiological properties of a single neuron, right pedal dorsal 1 (RPeD1), which has been demonstrated to be necessary for LTM formation. Following training in high (80 mg/l) environmental calcium, L. stagnalis formed ITM and LTM lasting 24 h and demonstrated a significant reduction in all activity measured from RPeD1; however when snails were exposed to low (20 mg/l) environmental calcium they were able to form ITM but not LTM. Although no behavioral LTM was formed, a partial reduction in RPeD1 activtiy measured 24 h after training was observed, indicating a residual effect of training. The strong effect that environmental calcium concentration had on physiology and behavior in response to training to reduce aerial respiration in L. stagnalis suggests that it is an element of gastropod husbandry that needs to be carefully considered when studying other traits. This study also indicates that L. stagnalis found naturally in low calcium environments may be less able to adapt to novel stressors than populations found in harder waters.
    Neurobiology of Learning and Memory 12/2010; 95(4):393-403. · 3.33 Impact Factor

Full-text

View
31 Downloads
Available from
Jun 5, 2014