Article

T-cell regulation: with complements from innate immunity.

Washington University School of Medicine, Department of Internal Medicine, Division of Rheumatology, Campus Box 8045, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA.
Nature reviews. Immunology (Impact Factor: 33.84). 02/2007; 7(1):9-18. DOI: 10.1038/nri1994
Source: PubMed

ABSTRACT The complement system was traditionally known as an effector arm of humoral immunity. Today we also recognize it as a main element of the innate immune system. In blood and other body fluids complement is a first line of defence against pathogens, because it becomes fully active within seconds. Active complement fragments attach to the invading pathogen to promote opsonization and lysis, triggering a local inflammatory response. This Review focuses on the evolving role of the complement system in the regulation of T-cell responses, from directing the initiation phase, through driving lineage commitment, to regulating the contraction phase.

0 Followers
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bordetella pertussis causes whooping cough or pertussis, a highly contagious disease of the respiratory tract. Despite high vaccination coverage, reported cases of pertussis are rising worldwide and it has become clear that the current vaccines must be improved. In addition to the well-known protective role of antibodies and T cells during B. pertussis infection, innate immune responses such as the complement system play an essential role in B. pertussis killing. In order to evade this complement activation and colonize the human host, B. pertussis expresses several molecules that inhibit complement activation. Interestingly, one of the known complement evasion proteins, autotransporter Vag8, is highly expressed in the recently emerged B. pertussis isolates. Here, we describe the current knowledge on how B. pertussis evades complement-mediated killing. In addition, we compare this to complement evasion strategies used by other bacterial species. Finally, we discuss the consequences of complement evasion by B. pertussis on adaptive immunity and how identification of the bacterial molecules and the mechanisms involved in complement evasion might help improve pertussis vaccines.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Immunology 01/2015; 33C:1-8. DOI:10.1016/j.coi.2014.12.010 · 7.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Molecular Immunology 03/2015; DOI:10.1016/j.molimm.2015.03.006 · 3.00 Impact Factor

Full-text (2 Sources)

Download
7,923 Downloads
Available from
May 22, 2014