Article

A complete analysis of the laser beam deflection systems used in cantilever-based systems.

Department of Physics and Physical Oceanography, Memorial University. St. John's, NL., Canada A1B 3X7.
Ultramicroscopy (Impact Factor: 2.47). 01/2007; 107(4-5):422-30. DOI: 10.1016/j.ultramic.2006.11.001
Source: PubMed

ABSTRACT A working model has been developed which can be used to significantly increase the accuracy of cantilever deflection measurements using optical beam techniques (used in cantilever-based sensors and atomic force microscopes), while simultaneously simplifying their use. By using elementary geometric optics and standard vector analysis it is possible, without any fitted or adjustable parameters, to completely and accurately describe the relationship between the cantilever deflection and the signal measured by a position sensitive photo-detector. By arranging the geometry of the cantilever/optical beam, it is possible to tailor the detection system to make it more sensitive at different stages of the cantilever deflection or to simply linearize the relationship between the cantilever deflection and the measured detector signal. Supporting material and software has been made available for download at http://www.physics.mun.ca/beauliu_lab/papers/cantilever_analysis.htm so that the reader may take full advantage of the model presented herein with minimal effort.

0 Bookmarks
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable gradients of refractive index by local gas heating and opens new diagnostics prospects particularly for microplasmas.
    The Review of scientific instruments 10/2012; 83(10):103506. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new method to improve the accuracy of force application and hardness measurements in hard surfaces by using low-force (<50 μN) nanoindentation technique with a cube-corner diamond tip mounted on an atomic force microscopy (AFM) sapphire cantilever. A force calibration procedure based on the force-matching method, which explicitly includes the tip geometry and the tip-substrate deformation during calibration, is proposed. A computer algorithm to automate this calibration procedure is also made available. The proposed methodology is verified experimentally by conducting AFM nanoindentations on fused quartz, Si(100) and a 100-nm-thick film of gold deposited on Si(100). Comparison of experimental results with finite element simulations and literature data yields excellent agreement. In particular, hardness measurements using AFM nanoindentation in fused quartz show a systematic error less than 2% when applying the force-matching method, as opposed to 37% with the standard protocol. Furthermore, the residual impressions left in the different substrates are examined in detail using non-contact AFM imaging with the same diamond probe. The uncertainty of method to measure the projected area of contact at maximum force due to elastic recovery effects is also discussed.
    Ultramicroscopy 12/2010; 111(1):11-9. · 2.47 Impact Factor
  • Futures. 01/2011; 43(10):1041-1043.

Full-text (3 Sources)

View
18 Downloads
Available from
May 22, 2014