Human oral drugs absorption is correlated to their in vitro uptake by brush border membrane vesicles

Biotechnology Research Institute, National Council of Canada, 6100 Royalmount, Montreal, Quebec H4P 2R2, Canada.
International Journal of Pharmaceutics (Impact Factor: 3.65). 05/2007; 336(1):115-21. DOI: 10.1016/j.ijpharm.2006.11.045
Source: PubMed


Brush border membrane vesicles (BBMV) were prepared from the rabbit small intestine for testing drug absorption potency through the enterocyte's apical membrane, which is an important compartment for drug oral absorption. Some modifications have been made to the traditional vesicle assay for adapting it to the 96-well plate format. The accumulation of 23 reference drugs was measured, and the data showed a good correlation with human oral absorption with a correlation coefficient R=0.853 (P<0.001), with the exception of a few false positive results. As the measured drug absorption may contain a membrane/protein binding component as well as drug uptake into vesicles, these two fractions can be discriminated by changing extravesicular osmolarity using different mannitol concentrations. This model can be applied for evaluating drug absorption rate/mechanisms, and helping drug selection in early drug research and development.

9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, in vitro systems were used to build 2 pharmacokinetic models that predict human oral bioavailability: the Caco-2/hepatocyte combination model and the Caco-2/hepatocyte hybrid model. Data obtained in vitro on Caco-2 cell permeability and hepatocyte clearance are routinely used to predict the fraction of absorption after oral administration and the extent of first-pass metabolism, respectively. In the Caco-2/hepatocyte combination model, results from a Caco-2 cell permeability assay and a hepatocyte clearance assay were combined to project oral bioavailability. Comparison of oral bioavailabilities predicted by the combination model and reported oral bioavailabilities in humans for 30 marketed compounds resulted in a modest correlation (r(2) = 0.66). The Caco-2/hepatocyte hybrid model, as previously reported, joins the Caco-2 and hepatocyte clearance systems into 1 assay. Improvements to the previous model were made by incorporating an elimination phase into the Caco-2/hepatocyte hybrid model. In the new hybrid model, the compound was added to a Caco-2-containing donor compartment and allowed to permeate for 2 h to a hepatocyte-containing receiver compartment. Subsequently, to mimic an elimination phase, the donor compartment was removed, and permeated compound was incubated with hepatocytes alone for an additional 3 h. The area under the concentration versus time curve (AUC) was determined for each of the same 30 marketed compounds assessed by the combination model. A linear regression analysis comparing the in vitro AUCs and reported oral bioavailabilities in humans showed a reasonable correlation (r(2) = 0.73). This study demonstrates that the Caco-2/hepatocyte hybrid model is more favorable and further proves the potential and feasibility of using in vitro screenings for the prediction of in vivo pharmacokinetics in humans.
    Journal of Biomolecular Screening 01/2008; 12(8):1084-91. DOI:10.1177/1087057107308892 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pharmaceutical industry is in need of rapid and accurate methods to screen new drug leads for intestinal permeability potential in the early stages of drug discovery. Excised human jejunal mucosa was used to investigate the permeability of the small intestine to four oral drugs, using a flow-through diffusion system. The four drugs were selected as representative model compounds of drug classes 1 and 3 according to the biopharmaceutics classification system (BCS). The drugs selected were zidovudine, propranolol HCl, didanosine, and enalapril maleate. Permeability values from our in vitro diffusion model were compared with the BCS permeability classification and in vivo and in vitro gastrointestinal drug permeability. The flux rates of the four drugs were influenced by the length of the experiment. Both class 1 drugs showed a significantly higher mean flux rate between 2 and 6 h across the jejunal mucosa compared to the class 3 drugs. The results are therefore in line with the drugs' BCS classification. The results of this study show that the permeability values of jejunal mucosa obtained with the flow-through diffusion system are good predictors of the selected BCS class 1 and 3 drugs' permeation, and it concurred with other in vitro and in vivo studies.
    AAPS PharmSciTech 02/2009; 10(1):270-5. DOI:10.1208/s12249-009-9207-4 · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To determine the contribution of intestinal PepT1 on the permeability and oral absorption of the β-lactam antibiotic drug cefadroxil. Methods: The effective permeability (P eff ) of cefadroxil was evaluated in wild-type and PepT1 knockout mice following in situ single-pass intestinal perfusions. The plasma concentration-time profiles of cefadroxil were also examined after oral gavage. Results: The P eff (cm/s) of cefadroxil in wild-type mice was 0.49 × 10(-4) in duodenum, 0.80 × 10(-4) in jejunum, 0.88 × 10(-4) in ileum and 0.064 × 10(-4) in colon. The P eff (cm/s) in PepT1 knockout mice was significantly reduced in small intestine, but not in colon, as shown by values of 0.003 × 10(-4), 0.090 × 10(-4), 0.042 × 10(-4) and 0.032 × 10(-4), respectively. Jejunal uptake of cefadroxil was saturable (Km = 2-4 mM) and significantly attenuated by the sodium-proton exchange inhibitor 5-(N,N-dimethyl)amiloride. Jejunal permeability of cefadroxil was not affected by L-histidine, glycine, cephalothin, p-aminohippurate or N-methylnicotinamide. In contrast, cefadroxil permeability was significantly reduced by glycylproline, glycylsarcosine, or cephalexin. Finally, PepT1 ablation resulted in 23-fold reductions in peak plasma concentrations and 14-fold reductions in systemic exposure of cefadroxil after oral dosing. Conclusions: The findings are definitive in demonstrating that PepT1 is the major transporter responsible for the small intestinal permeability of cefadroxil as well as its enhanced oral drug performance.
    Pharmaceutical Research 12/2012; 30(4). DOI:10.1007/s11095-012-0937-8 · 3.42 Impact Factor
Show more