Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
Journal of Biomolecular NMR (Impact Factor: 3.31). 02/2007; 37(1):53-63. DOI: 10.1007/s10858-006-9103-0
Source: PubMed

ABSTRACT Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Katanin p60 (kp60), a microtubule-severing enzyme, plays a key role in cytoskeletal reorganization during various cellular events in an ATP-dependent manner. We show that a single domain isolated from the N terminus of mouse katanin p60 (kp60-NTD) binds to tubulin. The solution structure of kp60-NTD was determined by NMR. Although their sequence similarities were as low as 20%, the structure of kp60-NTD revealed a striking similarity to those of the microtubule interacting and trafficking (MIT) domains, which adopt anti-parallel three-stranded helix bundle. In particular, the arrangement of helices 2 and 3 is well conserved between kp60-NTD and the MIT domain from Vps4, which is a homologous protein that promotes disassembly of the endosomal sorting complexes required for transport III membrane skeleton complex. Mutation studies revealed that the positively charged surface formed by helices 2 and 3 binds tubulin. This binding mode resembles the interaction between the MIT domain of Vps4 and Vps2/CHMP1a, a component of endosomal sorting complexes required for transport III. Our results show that both the molecular architecture and the binding modes are conserved between two AAA-ATPases, kp60 and Vps4. A common mechanism is evolutionarily conserved between two distinct cellular events, one that drives microtubule severing and the other involving membrane skeletal reorganization.
    Journal of Biological Chemistry 03/2010; 285(22):16822-9. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N-terminal regions of AAA-ATPases (ATPase associated with various cellular activities) often contain a domain that defines the distinct functions of the enzymes, such as substrate specificity and subcellular localization. As described herein, we have determined the solution structure of an N-terminal unique domain isolated from nuclear valosin-containing protein (VCP)-like protein 2 (NVL2(UD)). NVL2(UD) contains three α helices with an organization resembling that of a winged helix motif, whereas a pair of β-strands is missing. The structure is unique and distinct from those of other known type II AAA-ATPases, such as VCP. Consequently, we identified nucleolin from a HeLa cell extract as a binding partner of this domain. Nucleolin contains a long (∼300 amino acids) intrinsically unstructured region, followed by the four tandem RNA recognition motifs and the C-terminal glycine/arginine-rich domain. Binding analyses revealed that NVL2(UD) potentially binds to any of the combinations of two successive RNA binding domains in the presence of RNA. Furthermore, NVL2(UD) has a characteristic loop, in which the key basic residues RRKR are exposed to the solvent at the edge of the molecule. The mutation study showed that these residues are necessary and sufficient for nucleolin-RNA complex binding as well as nucleolar localization. Based on the observations presented above, we propose that NVL2 serves as an unfoldase for the nucleolin-RNA complex. As inferred from its RNA dependence and its ATPase activity, NVL2 might facilitate the dissociation and recycling of nucleolin, thereby promoting efficient ribosome biogenesis.
    Journal of Biological Chemistry 06/2011; 286(24):21732-41. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Katanin p60 (p60-katanin) is a microtubule (MT)-severing enzyme and its activity is regulated by the p80 subunit (adaptor-p80). p60-katanin consists of an N-terminal domain, followed by a single ATPase associated with various cellular activities (AAA) domain. We have previously shown that the N-terminal domain serves as the binding site for MT, the substrate of p60-katanin. In this study, we show that the same domain shares another interface with the C-terminal domain of adaptor-p80. We further show that Ca(2+) ions inhibit the MT-severing activity of p60-katanin, whereas the MT-binding activity is preserved in the presence of Ca(2+). In detail, the basal ATPase activity of p60-katanin is stimulated twofold by both MTs and the C-terminal domain of adaptor-p80, whereas Ca(2+) reduces elevated ATPase activity to the basal level. We identify the Ca(2+) -binding site at the end of helix 2 of the N-terminal domain, which is different from the MT-binding interface. On the basis of these observations, we propose a speculative model in which spatial rearrangement of the N-terminal domain relative to the C-terminal AAA domain may be important for productive ATP hydrolysis towards MT-severing. Our model can explain how Ca(2+) regulates both severing and ATP hydrolysis activity, because the Ca(2+) -binding site on the N-terminal domain moves close to the AAA domain during MT severing.
    FEBS Journal 02/2012; 279(7):1339-52. · 3.99 Impact Factor