Article

Mutations of presenilin genes in dilated cardiomyopathy and heart failure.

Familial Dilated Cardiomyopathy Research Program, Division of Cardiovascular Medicine and the Department of Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 01/2007; 79(6):1030-9. DOI: 10.1086/509900
Source: PubMed

ABSTRACT Two common disorders of the elderly are heart failure and Alzheimer disease (AD). Heart failure usually results from dilated cardiomyopathy (DCM). DCM of unknown cause in families has recently been shown to result from genetic disease, highlighting newly discovered disease mechanisms. AD is the most frequent neurodegenerative disease of older Americans. Familial AD is caused most commonly by presenilin 1 (PSEN1) or presenilin 2 (PSEN2) mutations, a discovery that has greatly advanced the field. The presenilins are also expressed in the heart and are critical to cardiac development. We hypothesized that mutations in presenilins may also be associated with DCM and that their discovery could provide new insight into the pathogenesis of DCM and heart failure. A total of 315 index patients with DCM were evaluated for sequence variation in PSEN1 and PSEN2. Families positive for mutations underwent additional clinical, genetic, and functional studies. A novel PSEN1 missense mutation (Asp333Gly) was identified in one family, and a single PSEN2 missense mutation (Ser130Leu) was found in two other families. Both mutations segregated with DCM and heart failure. The PSEN1 mutation was associated with complete penetrance and progressive disease that resulted in the necessity of cardiac transplantation or in death. The PSEN2 mutation showed partial penetrance, milder disease, and a more favorable prognosis. Calcium signaling was altered in cultured skin fibroblasts from PSEN1 and PSEN2 mutation carriers. These data indicate that PSEN1 and PSEN2 mutations are associated with DCM and heart failure and implicate novel mechanisms of myocardial disease.

0 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common and complex neurodegenerative disease in the elderly individuals. Recently, genome-wide association studies (GWAS) have been used to investigate AD pathogenesis. These GWAS have yielded important new insights into the genetic mechanisms of AD. However, these newly identified AD susceptibility loci exert only very small risk effects and cannot fully explain the underlying AD genetic risk. We hypothesize that combining the findings from different AD GWAS may have greater power than genetic analysis alone. To identify new AD risk factors, we integrated findings from 3 previous large-scale AD GWAS (n = 14,138) using a gene-based meta-analysis and subsequently conducted a pathway analysis using the kyoto encyclopedia of genes and genomes and gene ontology databases. Interestingly, we not only confirmed previous findings, but also highlighted, for the first time, the involvement of cardiovascular disease-related pathways in AD. Our results provided the clues as to the link between these diseases using pathway analysis methods. We believe that these findings will be very useful for future genetic studies of AD.
    Neurobiology of aging 10/2013; 35(4). DOI:10.1016/j.neurobiolaging.2013.10.084 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dilated cardiomyopathy commonly causes heart failure and is the most frequent precipitating cause of heart transplantation. Familial dilated cardiomyopathy has been shown to be caused by rare variant mutations in more than 30 genes but only ~35% of its genetic cause has been identified, principally by using linkage-based or candidate gene discovery approaches. In a multigenerational family with auto-somal dominant transmission, we employed whole-exome sequencing in a proband and three of his affected family members, and genome-wide copy number variation in the proband and his affected father and unaffected mother. Exome sequencing identified 428 single point variants resulting in missense, nonsense, or splice site changes. Genome-wide copy number analysis identified 51 insertion deletions and 440 copy number variants > 1 kb. Of these, a 8733 bp deletion, encompassing exon 4 of the heat shock protein cochaperone BCL2-associated athanogene 3 (BAG3), was found in seven affected family members and was absent in 355 controls. To establish the relevance of variants in this protein class in genetic DCM, we sequenced the coding exons in BAG3 in 311 other unrelated DCM probands and identified one frameshift, two nonsense, and four missense rare variants absent in 355 control DNAs, four of which were familial and segregated with disease. Knockdown of bag3 in a zebrafish model recapitulated DCM and heart failure. We conclude that new comprehensive genomic approaches have identified rare variants in BAG3 as causative of DCM.
    The American Journal of Human Genetics 03/2011; 88(3):273-82. · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new concept in the field of heart failure research points to a role of misfolded proteins, forming pre-amyloid oligomers (PAOs), in cardiac toxicity. This is largely based on few studies reporting the presence of PAOs, similar to those observed in neurodegenerative disease, in experimental models and human heart failure. As the majority of proteinopathies are sporadic in nature, protein post-translational modifications (PTMs) likely play a major role in this growing class of diseases. In fact, PTMs are known regulators of protein folding and of the formation of amyloid species in well-established proteinopathies. Proteomics has been instrumental in identifying both chemical and enzymatic PTMs, with a potential impact on protein mis-/folding. Here we provide the basics on how proteins fold along with a few examples of PTMs known to modulate protein misfolding and aggregation, with particular focus on the heart. Due to its innovative content and the growing awareness of the toxicity of misfolded proteins an “Alzheimer's theory of heart failure” is timely. Moreover, the continuous innovations in proteomic technologies will help pinpoint PTMs that could contribute to the process. This nuptial between biology and technology could greatly assist in identifying biomarkers with increased specificity as well as more effective therapies.This article is protected by copyright. All rights reserved
    PROTEOMICS - CLINICAL APPLICATIONS 06/2014; 8(7-8). DOI:10.1002/prca.201400037 · 1.81 Impact Factor

Preview

Download
2 Downloads
Available from