Differential expression of two bc 1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology 153: 102-110

University of Santiago, Chile, CiudadSantiago, Santiago Metropolitan, Chile
Microbiology (Impact Factor: 2.56). 02/2007; 153(Pt 1):102-10. DOI: 10.1099/mic.0.2006/000067-0
Source: PubMed


Three strains of the strict acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans, including the type strain ATCC 23270, contain a petIIABC gene cluster that encodes the three proteins, cytochrome c1, cytochrome b and a Rieske protein, that constitute a bc1 electron-transfer complex. RT-PCR and Northern blotting show that the petIIABC cluster is co-transcribed with cycA, encoding a cytochrome c belonging to the c4 family, sdrA, encoding a putative short-chain dehydrogenase, and hip, encoding a high potential iron-sulfur protein, suggesting that the six genes constitute an operon, termed the petII operon. Previous results indicated that A. ferrooxidans contains a second pet operon, termed the petI operon, which contains a gene cluster that is similarly organized except that it lacks hip. Real-time PCR and Northern blot experiments demonstrate that petI is transcribed mainly in cells grown in medium containing iron, whereas petII is transcribed in cells grown in media containing sulfur or iron. Primer extension experiments revealed possible transcription initiation sites for the petI and petII operons. A model is presented in which petI is proposed to encode the bc1 complex, functioning in the uphill flow of electrons from iron to NAD(P), whereas petII is suggested to be involved in electron transfer from sulfur (or formate) to oxygen (or ferric iron). A. ferrooxidans is the only organism, to date, to exhibit two functional bc1 complexes.

Download full-text


Available from: David S Holmes, Oct 01, 2015
21 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: In prokaryotes, genes belonging to the same operon are transcribed in a single mRNA molecule. Transcription starts as the RNA polymerase binds to the promoter and continues until it reaches a transcriptional terminator. Some terminators rely on the presence of the Rho protein, whereas others function independently of Rho. Such Rho-independent terminators consist of an inverted repeat followed by a stretch of thymine residues, allowing us to predict their presence directly from the DNA sequence. Unlike in Escherichia coli, the Rho protein is dispensable in Bacillus subtilis, suggesting a limited role for Rho-dependent termination in this organism and possibly in other Firmicutes. We analyzed 463 experimentally known terminating sequences in B. subtilis and found a decision rule to distinguish Rho-independent transcriptional terminators from non-terminating sequences. The decision rule allowed us to find the boundaries of operons in B. subtilis with a sensitivity and specificity of about 94%. Using the same decision rule, we found an average sensitivity of 94% for 57 bacteria belonging to the Firmicutes phylum, and a considerably lower sensitivity for other bacteria. Our analysis shows that Rho-independent termination is dominant for Firmicutes in general, and that the properties of the transcriptional terminators are conserved. Terminator prediction can be used to reliably predict the operon structure in these organisms, even in the absence of experimentally known operons. Genome-wide predictions of Rho-independent terminators for the 57 Firmicutes are available in the Supporting Information section.
    PLoS Computational Biology 01/2005; 1(3). DOI:10.1371/journal.pcbi.0010025.eor · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the bioleaching microorganisms, Acidithiobacillus ferrooxidans is one of the most studied. The bioleaching and bioremediation properties of this obligate chemolithoautotroph originate from its energetic metabolism. Even though several electron-transfer proteins have been identified, there is no convincing argument to tell in which respiratory chain these proteins are involved. Rusticyanin is the A. ferrooxidans redox protein which has been the most extensively studied. This periplasmic blue copper protein is widely considered to play an important role in ferrous oxidation mainly because of its higher concentration in iron-grown cells compared to sulfur-grown cells. To gain more insight on which conditions rusticyanin is synthesized, we have studied the rus gene expression all along the growth in iron- and sulfur-supplemented media at the translational level by immunodetection and at the transcriptional level by Northern blot analyses and quantitative RT-PCR experiments. In the A. ferrooxidans ATCC 33020 strain, rusticyanin was present in ferrous iron-grown cells throughout all the growth phases. In sulfur-grown cells, rusticyanin was present only during the exponential phase, but to a lower level than in iron conditions, and disappeared at the stationary phase. In cultures switched from sulfur- to iron-medium, there was a correlation between iron oxidation and the rusticyanin level. Strikingly, the de novo synthesis of rusticyanin was observed in sulfur-grown cells. All these data agree with a control on rusticyanin level in the cells depending on the electron donor present in the medium and on the growth phase in sulfur-grown cells. Furthermore, they are consistent with the involvement of rusticyanin in iron oxidation.
    Hydrometallurgy 10/2003; 71(1-2-71):107-114. DOI:10.1016/S0304-386X(03)00146-4 · 1.93 Impact Factor
Show more