Calreticulin exposure dictates the immunogenicity of cancer cell death.

INSERM U848, 39 Rue Camille-Desmoulins, F-94805 Villejuif, France.
Nature Medicine (Impact Factor: 28.05). 02/2007; 13(1):54-61. DOI: 10.1038/nm1523
Source: PubMed

ABSTRACT Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune escape is a critical gateway to malignancy. The emergence of this fundamental trait of cancer represents the defeat of immune surveillance, a potent, multi-armed and essential mode of cancer suppression that may influence the ultimate clinical impact of an early stage tumor. Indeed, immune escape may be a central modifier of clinical outcomes, by affecting tumor dormancy versus progression, licensing invasion and metastasis and impacting therapeutic response. Although relatively little studied until recently, immune suppression and escape in tumors are now hot areas with clinical translation of several new therapeutic agents already under way. The interconnections between signaling pathways that control immune escape and those that control proliferation, senescence, apoptosis, metabolic alterations, angiogenesis, invasion and metastasis remain virtually unexplored, offering rich new areas for investigation. Here, an overview of this area is provided with a focus on the tryptophan catabolic enzyme indoleamine 2,3-dioxygenase (IDO) and its recently discovered relative IDO2 that are implicated in suppressing T-cell immunity in normal and pathological settings including cancer. Emerging evidence suggests that during cancer progression activation of the IDO pathway might act as a preferred nodal modifier pathway for immune escape, for example analogous to the PI3K pathway for survival or the VEGF pathway for angiogenesis. Small molecule inhibitors of IDO and IDO2 heighten chemotherapeutic efficacy in mouse models of cancer in a nontoxic fashion and an initial lead compound entered phase I clinical trials in late 2007. New modalities in this area offer promising ways to broaden the combinatorial attack on advanced cancers, where immune escape mechanisms likely provide pivotal support.
    Oncogene 07/2008; 27(28):3889-900. DOI:10.1038/onc.2008.35 · 8.56 Impact Factor
  • Source
    British Journal of Haematology 05/2008; 141(2):271-3. DOI:10.1111/j.1365-2141.2008.07001.x · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The viral mitochondrial inhibitor of apoptosis (vMIA) encoded by the human cytomegalovirus exerts cytopathic effects and neutralizes the proapoptotic endogenous Bcl-2 family member Bax by recruiting it to mitochondria, inducing its oligomerization and membrane insertion. Using a combination of computational modeling and mutational analyses, we addressed the structure-function relationship of the molecular interaction between the protein Bax and the viral antiapoptotic protein vMIA. We propose a model in which vMIA exhibits an overall fold similar to Bcl-X(L). In contrast to Bcl-X(L), however, this predicted conformation of vMIA does not bind to the BH3 domain of Bax and rather engages in electrostatic interactions that involve a stretch of amino acids between the BH3 and BH2 domains of Bax and an alpha-helical domain located within the previously defined Bax-binding domain of vMIA, between the putative BH1-like and BH2-like domains. According to this model, vMIA is likely to bind Bax preferentially in its membrane-inserted conformation. The capacity of vMIA to cause fragmentation of the mitochondrial network and disorganization of the actin cytoskeleton is independent of its Bax-binding function. We found that Delta131-147 vMIA mutant, which lacks both the Bax-binding function and cell-death suppression but has intact mitochondria-targeting capacity, is similar to vMIA in its ability to disrupt the mitochondrial network and to disorganize the actin cytoskeleton. vMIADelta131-147 is a dominant-negative inhibitor of the antiapoptotic function of wild-type vMIA. Our experiments with vMIADelta131-147 suggest that vMIA forms homo-oligomers, which may engage in cooperative and/or multivalent interactions with Bax, leading to its functional neutralization.
    Oncogene 12/2007; 26(50):7067-80. DOI:10.1038/sj.onc.1210511 · 8.56 Impact Factor