Article

Confined animal feeding operations as amplifiers of influenza.

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK.
Vector Borne and Zoonotic Diseases (Impact Factor: 2.53). 02/2006; 6(4):338-46. DOI: 10.1089/vbz.2006.6.338
Source: PubMed

ABSTRACT Influenza pandemics occur when a novel influenza strain, often of animal origin, becomes transmissible between humans. Domestic animal species such as poultry or swine in confined animal feeding operations (CAFOs) could serve as local amplifiers for such a new strain of influenza. A mathematical model is used to examine the transmission dynamics of a new influenza virus among three sequentially linked populations: the CAFO species, the CAFO workers (the bridging population), and the rest of the local human population. Using parameters based on swine data, simulations showed that when CAFO workers comprised 15-45% of the community, human influenza cases increased by 42-86%. Successful vaccination of at least 50% of CAFO workers cancelled the amplification. A human influenza epidemic due to a new virus could be locally amplified by the presence of confined animal feeding operations in the community. Thus vaccination of CAFO workers would be an effective use of a pandemic vaccine.

Download full-text

Full-text

Available from: Roberto A. Saenz, Jul 23, 2014
1 Follower
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simulation models implemented using a range of parameters offer a useful approach to identifying effective disease intervention strategies. The objective of this study was to investigate the effects of key control strategies to mitigate the simultaneous spread of influenza among and between swine and human populations. We used the pandemic H1N1 2009 virus as a case study. The study population included swine herds (488 herds) and households-of-people (29 707 households) within a county in Ontario, Canada. Households were categorized as: (i) rural households with swine workers, (ii) rural households without swine workers and (iii) urban households without swine workers. Seventy-two scenarios were investigated based on a combination of the parameters of speed of detection and control strategies, such as quarantine strategy, effectiveness of movement restriction and ring vaccination strategy, all assessed at three levels of transmissibility of the virus at the swine–human interface. Results showed that the speed of detection of the infected units combined with the quarantine strategy had the largest impact on the duration and size of outbreaks. A combination of fast to moderate speed of the detection (where infected units were detected within 5–10 days since first infection) and quarantine of the detected units alone contained the outbreak within the swine population in most of the simulated outbreaks. Ring vaccination had no added beneficial effect. In conclusion, our study suggests that the early detection (and therefore effective surveillance) and effective quarantine had the largest impact in the control of the influenza spread, consistent with earlier studies. To our knowledge, no study had previously assessed the impact of the combination of different intervention strategies involving the simultaneous spread of influenza between swine and human populations.
    Transboundary and Emerging Diseases 09/2014; DOI:10.1111/tbed.12260 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The circulation of zoonotic influenza A viruses including pH1N1 2009 and H5N1 continue to present a constant threat to animal and human populations. Recently, an H3N2 variant spread from pigs to humans and between humans in limited numbers. Accordingly, this research investigated a range of scenarios of the transmission dynamics of pH1N1 2009 virus at the swine–human interface while accounting for different percentages of swine workers initially immune. Furthermore, the feasibility of using NAADSM (North American Animal Disease Spread Model) applied as a one-health simulation model was assessed. The study population included 488 swine herds and 29, 707 households of people within a county in Ontario, Canada. Households were categorized as follows: (i) rural households with swine workers, (ii) rural households without swine workers, and (iii) urban households without swine workers. Forty-eight scenarios were investigated, based on the combination of six scenarios around the transmissibility of the virus at the interface and four vaccination coverage levels of swine workers (0–60%), all under two settings of either swine or human origin of the virus. Outcomes were assessed in terms of stochastic ‘die-out’ fraction, size and time to peak epidemic day, overall size and duration of the outbreaks. The modelled outcomes indicated that minimizing influenza transmissibility at the interface and targeted vaccination of swine workers had significant beneficial effects. Our results indicate that NAADSM can be used as a framework to model the spread and control of contagious zoonotic diseases among animal and human populations, under certain simplifying assumptions. Further evaluation of the model is required. In addition to these specific findings, this study serves as a benchmark that can provide useful input to a future one-health influenza modelling studies. Some pertinent information gaps were also identified. Enhanced surveillance and the collection of high-quality information for more accurate parameterization of such models are encouraged.
    Transboundary and Emerging Diseases 03/2014; DOI:10.1111/tbed.12215 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct additional research to the study of influenza transmission dynamics in animals and at the animal-human interface.
    Zoonoses and Public Health 09/2012; DOI:10.1111/zph.12010 · 2.07 Impact Factor