Article

Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing Amelogenin Y.

Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
Human Molecular Genetics (Impact Factor: 6.68). 03/2007; 16(3):307-16. DOI: 10.1093/hmg/ddl465
Source: PubMed

ABSTRACT Structural polymorphism is increasingly recognized as a major form of human genome variation, and is particularly prevalent on the Y chromosome. Assay of the Amelogenin Y gene (AMELY) on Yp is widely used in DNA-based sex testing, and sometimes reveals males who have interstitial deletions. In a collection of 45 deletion males from 12 populations, we used a combination of sequence-tagged site mapping, and binary-marker and Y-short tandem repeat haplotyping to understand the structural basis of this variation. Of the 45 deletion males, 41 carry indistinguishable deletions, 3.0-3.8 Mb in size. Breakpoint mapping strongly implicates a mechanism of non-allelic homologous recombination between the proximal major array of TSPY gene-containing repeats, and a single distal copy of TSPY; this is supported by the estimation of TSPY copy number in deleted and non-deleted males. The remaining four males carry three distinct non-recurrent deletions (2.5-4.0 Mb), which may be due to non-homologous mechanisms. Haplotyping shows that TSPY-mediated deletions have arisen seven times independently in the sample. One instance, represented by 30 chromosomes mostly of Indian origin within haplogroup J2e1*/M241, has a time-to-most-recent-common-ancestor of approximately 7700+/-1300 years. In addition to AMELY, deletion males all lack the genes PRKY and TBL1Y, and the rarer deletion classes also lack PCDH11Y. The persistence and expansion of deletion lineages, together with direct phenotypic evidence, suggests that absence of these genes has no major deleterious effects.

0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Study of gender markers is a part of routine forensic genetic examination of crime scene and reference samples, paternity testing and personal identification. Amelogenin locus as a gender marker is included in majority of forensic STR kits of different manufacturers. In current study we report 11 cases of amelogenin abnormalities identified in males of Belarusian origin: 9 cases of AMELY dropout and 2 cases of AMELX dropout. Cases were obtained from forensic casework (n=9) and paternity testing (n=2) groups. In 4 out of 9 AMELY-negative cases deletion of AMELY was associated with the loss of DYS458 marker. In addition, we identified 3 males with SRY-positive XX male syndrome. Deletion of the long arm of the Y-chromosome was detected in two XX males. Loss of the major part of the Y-chromosome was identified in the third XX male. The presence of two X-chromosomes in XX males was confirmed with the use of Mentype(®) Argus X-8 PCR Amplification Kit. AMELY null allele observed in 2 out of 9 cases with AMELY dropout can be caused by mutation in the primer-binding site of AMELY allele. Primer-binding site mutations of AMELX can result in AMELX dropout identified in 2 cases with amplification failure of AMELX. Our study represents the first report and molecular genetic investigation of amelogenin abnormalities in the Belarusian population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Forensic Science International: Genetics 10/2014; 15. DOI:10.1016/j.fsigen.2014.10.014 · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51 ×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analysing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of non-synonymous variants in 15 MSY single-copy genes.
    Molecular Biology and Evolution 12/2014; 32(3). DOI:10.1093/molbev/msu327 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE To determine the prevalence of chromosomal abnormalities and microdeletions on Y chromosome in infertile patients with oligozoospermia or azoospermia in Mato Grosso state, Brazil. METHODS This cross-sectional study enrolled 94 men from infertile couples. Karyotype analysis was performed by lymphocyte culture technique. DNA from each sample was extracted using non-enzymatic method. Microdeletions were investigated by polymerase chain reaction (PCR). RESULTS With the use of cytogenetic analysis, five patients (5.3%) had abnormal karyotype, one azoospermic patient (1.1%) had karyotype 46,XY,t(7;1) (qter-p35), one (1.1%) with mild oligozoospermia had karyotype 46,XY,delY(q), and two other azoospermic patients had karyotype 47,XXY, consistent with Klinefelter syndrome (KS). One of them (1.1%) with severe oligozoospermia had karyotype 46,XY,8p+. Microdeletion on Y chromosome was found in the azoospermia factor c (AZFc) region in only one azoospermic patient (1.1%). CONCLUSIONS The prevalence of genetic abnormalities in oligo/azoospermic Brazilian men from infertile couple was 5.3%, and microdeletion on Y chromosome was not a common finding in this population (1.1%).
    08/2014; 8:51-7. DOI:10.4137/CMRH.S15475

Preview

Download
3 Downloads
Available from