Article

Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing Amelogenin Y.

Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
Human Molecular Genetics (Impact Factor: 7.69). 03/2007; 16(3):307-16. DOI:10.1093/hmg/ddl465
Source: PubMed

ABSTRACT Structural polymorphism is increasingly recognized as a major form of human genome variation, and is particularly prevalent on the Y chromosome. Assay of the Amelogenin Y gene (AMELY) on Yp is widely used in DNA-based sex testing, and sometimes reveals males who have interstitial deletions. In a collection of 45 deletion males from 12 populations, we used a combination of sequence-tagged site mapping, and binary-marker and Y-short tandem repeat haplotyping to understand the structural basis of this variation. Of the 45 deletion males, 41 carry indistinguishable deletions, 3.0-3.8 Mb in size. Breakpoint mapping strongly implicates a mechanism of non-allelic homologous recombination between the proximal major array of TSPY gene-containing repeats, and a single distal copy of TSPY; this is supported by the estimation of TSPY copy number in deleted and non-deleted males. The remaining four males carry three distinct non-recurrent deletions (2.5-4.0 Mb), which may be due to non-homologous mechanisms. Haplotyping shows that TSPY-mediated deletions have arisen seven times independently in the sample. One instance, represented by 30 chromosomes mostly of Indian origin within haplogroup J2e1*/M241, has a time-to-most-recent-common-ancestor of approximately 7700+/-1300 years. In addition to AMELY, deletion males all lack the genes PRKY and TBL1Y, and the rarer deletion classes also lack PCDH11Y. The persistence and expansion of deletion lineages, together with direct phenotypic evidence, suggests that absence of these genes has no major deleterious effects.

0 0
 · 
0 Bookmarks
 · 
63 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Prostate cancer is a known cause of mortality in men worldwide although the risk factor varies among different ethnic groups. Loss of the Y chromosome is a common chromosomal abnormality observed in the human prostate cancer. RESULTS: We screened 51 standard sequence tagged sites (STSs) corresponding to a male-specific region of the Y chromosome (MSY), sequenced the coding region of the SRY gene and assessed the status of the DYZ1 arrays in the human prostate cancer cell lines DU145 and LNCaP. The MSY was found to be intact and coding region of SRY showed no sequence variation in both the cell lines. However, DYZ1 arrays showed sequence and copy number variations. DU145 and LNCaP cells were found to carry 742 and 1945 copies of the DYZ1, respectively per 3.3 pg of genomic DNA. The DYZ1 copies detected in these cell lines are much below the average of that reported in normal human males. Similarly, the number of "TTCCA" repeat and its derivatives within the DYZ1 arrays showed variation compared to those of the normal males. CONCLUSIONS: Clearly, the DYZ1 is maximally affected in both the cell lines. Work on additional cell lines and biopsied samples would augment our understanding about the susceptibility of this region. Based on the present work, we construe that copy number status of the DYZ1 may be exploited as a supplementary prognostic tool to monitor the occurrence of prostate cancer using biopsied samples.
    BMC Genomics 05/2013; 14(1):323. · 4.40 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A 3.5-Mb region of the X chromosome underwent duplication and transposition to the Y chromosome ~5-6 Mya. This X-transposed-region (XTR) originated at Xq21.3 and was inserted at Yp11.2. The two locations have 98.78 % homology and a high concentration of tandem repeats. In whole-genome scans of ten large families with dyslexic members, we identified transposed blocks comprising >102 kb of the Yp11.2 region in its homologous region at Xq21.3 in three females from three different families. Although recombination is known to be limited only to the pseudoautosomal regions (PARs) of the X and Y chromosomes, we report allelic unequal recombination between the XTR region Yp11.2 and Xq21.3, indicating the presence of a new PAR, which we named PAR3. This PAR3 region was also found in 2 % of the general population. An additional layer of justification could be provided from six other dyslexic cases which harbored duplications and deletions in the same Xq21.3 and Yp11.2 regions through allelic unequal recombination.
    Functional & Integrative Genomics 05/2013; · 3.83 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.
    Forensic science international. Genetics 09/2013; 7(5):475-81. · 2.42 Impact Factor

Full-text

View
2 Downloads
Available from