A genotype of exceptional longevity is associated with preservation of cognitive function

Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
Neurology (Impact Factor: 8.29). 12/2006; 67(12):2170-5. DOI: 10.1212/01.wnl.0000249116.50854.65
Source: PubMed


To test whether cholesterol ester transfer protein (CETP) genotype (VV homozygosity for I405V) is associated with preservation of cognitive function in addition to its association with exceptional longevity.
We studied Ashkenazi Jews with exceptional longevity (n = 158; age 99.2 +/- 0.3 years) for the associations of CETP VV genotype and lipoprotein phenotype, using the Mini-Mental State Examination (MMSE). To confirm the role of CETP in a younger cohort, we studied subjects from the Einstein Aging Study (EAS) for associations between CETP VV and cognitive impairment.
Subjects with MMSE > 25 were twice as likely to have the CETP VV genotype (29% vs 14%, p = 0.02), and those with the VV genotype were more likely (61% vs 30%, p = 0.02) to have MMSE > 25. Subjects with the VV genotype had lower levels of CETP (1.73 +/- 0.11 vs 2.12 +/- 0.10 mug/mL, p = 0.01), higher high-density lipoprotein (HDL) levels (p = 0.02), and larger lipoprotein particles (p = 0.03). In the EAS cohort, an approximately fivefold increase in the VV genotype (21% vs 4%, p = 0.02), higher HDL levels, and larger lipoprotein particle sizes were associated with less dementia and improved memory.
Using two independent cohorts, we implicate the longevity CETP gene as a modulator of age-related cognitive function. A specific CETP genotype is associated with lower CETP levels and a favorable lipoprotein profile. It has not been determined whether modulation of this gene prevents age-related decline or AD.

Download full-text


Available from: Gil Atzmon,
  • Source
    • "CETP V405 homozygosity was associated with slower memory decline and lower incidence of dementia and Alzheimer disease risk in healthy older adults compared with controls in the Einstein Aging Study (Sanders et al., 2010). In Ashkenazi Jews from the Longevity Gene Study, high levels of HDL and its large lipoprotein sizes were over represented in centenarians, as well as the prevalence of homozygosity for I405V-CETP and 641C-APOC3 in both centenarians and their offspring than in the controls (Barzilai et al., 2006; Bergman et al., 2007). We also found high levels of HDL and a borderline higher prevalence of homozygosity for 641C-APOC3 (rs2542052: p = 0.06) in the healthy LLFS subjects as compared to an independent data from the Family Heart Study (N = 3794 European-Americans) that has approximately half families CVDselected and the other half families randomly-selected. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The plasma levels of high-density lipoprotein cholesterol (HDL) have an inverse relationship to the risks of atherosclerosis and cardiovascular disease, and have also been associated with longevity. We sought to identify novel loci for HDL that could potentially provide new insights into biological regulation of HDL metabolism in healthy-longevous subjects. We performed a genome-wide association scan on HDL using a mixed model approach to account for family structure using kinship coefficients. A total of 4,114 subjects of European descent (480 families) were genotyped at ~2.3 million SNPs and ~38 million SNPs were imputed using the 1000 Genome Cosmopolitan reference panel in MACH. We identified novel variants near-NLRP1 (17p13) associated with an increase of HDL levels at genome-wide significant level (p< 5.0E-08). Additionally, several CETP (16q21) and ZNF259-APOA5-A4-C3-A1 (11q23.3) variants associated with HDL were found, replicating those previously reported in the literature. A possible regulatory variant upstream of NLRP1 that is associated with HDL in these elderly LLFS subjects may also contribute to their longevity and health. Our NLRP1 intergenic SNPs show a potential regulatory function in ENCODE; however, it is not clear whether they regulate NLRP1 or other more remote gene. NLRP1 plays an important role in the induction of apoptosis, and its inflammasome is critical for mediating innate immune responses. Nlrp1a (a mouse ortholog of human NLRP1) interacts with SREBP-1a (17p11) which has a fundamental role in lipid concentration and composition, and is involved in innate immune response in macrophages. The NLRP1 region is conserved in mammals, but also has evolved adaptively showing signals of positive selection in European populations that might confer an advantage. NLRP1 intergenic SNPs have also been associated with immunity/inflammasome disorders which highlights the biological importance of this chromosomal region.
    Frontiers in Genetics 06/2014; 5:159. DOI:10.3389/fgene.2014.00159
  • Source
    • "Aging-associated disorders include immune dysfunction (Candore et al., 2006; Sansoni et al., 2008), cognition degeneration (Barzilai et al., 2006; Mehta, 2007), cardiovascular disease (Dominguez and Barbagallo, 2007) and metabolic syndrome (Maggi et al., 2008). Increasing evidence suggests that aging increases the risk of degeneration of the nervous system, which mostly affects the moral and physiological life of the elderly. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anthocyanins are a group of natural phenolic compounds responsible for the colour to plants and fruits. These compounds might have beneficial effects on memory and have antioxidant properties. In the present study we have investigated the therapeutic efficacy of anthocyanins in an animal model of cognitive deficits, associated to Alzheimer's disease, induced by scopolamine. We evaluated whether anthocyanins protect the effects caused by SCO on nitrite/nitrate (NOx) levels and Na(+),K(+)-ATPase and Ca(2+)-ATPase and acethylcholinesterase (AChE) activities in the cerebral cortex and hippocampus (of rats. We used 4 different groups of animals: control (CTRL), anthocyanins treated (ANT), scopolamine-challenged (SCO), and scopolamine+anthocyanins (SCO+ANT). After seven days of treatment with ANT (200mg/kg; oral), the animals were SCO injected (1mg/kg; IP) and were performed the behavior tests, and submitted to euthanasia. A memory deficit was found in SCO group, but ANT treatment prevented this impairment of memory (P<0.05). The ANT treatment per se had an anxiolitic effect. AChE activity was increased in both in cortex and hipoccampus of SCO group, this effect was significantly attenuated by ANT (P<0.05). SCO decreased Na(+),K(+)-ATPase and Ca(2+)-ATPase activities in hippocampus, and ANT was able to significantly (P<0.05) prevent these effects. No significant alteration was found on NOx levels among the groups. In conclusion, the ANT is able to regulate cholinergic neurotransmission and restore the Na(+),K(+)-ATPase and Ca(2+)-ATPase activities, and also prevented memory deficits caused by scopolamine administration.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 12/2013; 33(1). DOI:10.1016/j.ijdevneu.2013.12.006 · 2.58 Impact Factor
  • Source
    • "Additional genes show promise of great relevance to healthy aging. A variant at CETP, for example, though inconsistently associated with longevity in different populations (reviewed by (Christensen et al. 2006)), in 213 Ashkenazi Jewish individuals of average age 98 is associated not only with longevity but also with additional aging-related phenotypes including a desirable lipid profile (Barzilai et al. 2003) and preservation of cognitive function (Barzilai et al. 2006). Other recent studies with extensive replication data are also encouraging. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Longevity and healthy aging are among the most complex phenotypes studied to date. The heritability of age at death in adulthood is approximately 25 %. Studies of exceptionally long-lived individuals show that heritability is greatest at the oldest ages. Linkage studies of exceptionally long-lived families now support a longevity locus on chromosome 3; other putative longevity loci differ between studies. Candidate gene studies have identified variants at APOE and FOXO3A associated with longevity; other genes show inconsistent results. Genome-wide association scans (GWAS) of centenarians vs. younger controls reveal only APOE as achieving genome-wide significance (GWS); however, analyses of combinations of SNPs or genes represented among associations that do not reach GWS have identified pathways and signatures that converge upon genes and biological processes related to aging. The impact of these SNPs, which may exert joint effects, may be obscured by gene-environment interactions or inter-ethnic differences. GWAS and whole genome sequencing data both show that the risk alleles defined by GWAS of common complex diseases are, perhaps surprisingly, found in long-lived individuals, who may tolerate them by means of protective genetic factors. Such protective factors may 'buffer' the effects of specific risk alleles. Rare alleles are also likely to contribute to healthy aging and longevity. Epigenetics is quickly emerging as a critical aspect of aging and longevity. Centenarians delay age-related methylation changes, and they can pass this methylation preservation ability on to their offspring. Non-genetic factors, particularly lifestyle, clearly affect the development of age-related diseases and affect health and lifespan in the general population. To fully understand the desirable phenotypes of healthy aging and longevity, it will be necessary to examine whole genome data from large numbers of healthy long-lived individuals to look simultaneously at both common and rare alleles, with impeccable control for population stratification and consideration of non-genetic factors such as environment.
    Human Genetics 08/2013; 132(12). DOI:10.1007/s00439-013-1342-z · 4.82 Impact Factor
Show more