Article

Induction of indoleamine 2,3-dioxygenase by interferon-gamma in human islets.

Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, 1775 Ursula St., Mail Stop B-140, Aurora, CO 80045-6511, USA.
Diabetes (Impact Factor: 8.47). 01/2007; 56(1):72-9. DOI: 10.2337/db06-0617
Source: PubMed

ABSTRACT Indoleamine 2,3-dioxygenase (IDO) catalyzes the initial, rate-limiting step of tryptophan (Trp) catabolism along the kynurenine (KYN) pathway, and its induction in cells of the immune system in response to cytokines has been implicated in the regulation of antigen presentation and responses to cell-mediated immune attack. Microarray and quantitative PCR analyses of isolated human islets incubated with interferon (IFN)-gamma for 24 h revealed increased expression of IDO mRNA (>139-fold) and Trp-tRNA synthase (WARS) (>17-fold) along with 975 other transcripts more than threefold, notably the downstream effectors janus kinase (JAK)2, signal transducer and activator of transcription (STAT)1, IFN-gamma regulatory factor-1, and several chemokines (CXCL9/MIG, CXCL10/IP10, CXCL11/1-TAC, CCL2, and CCL5/RANTES) and their receptors. IDO protein expression was upregulated in IFN-gamma-treated islets and accompanied by increased intracellular IDO enzyme activity and the release of KYN into the media. The response to IFN-gamma was countered by interleukin-4 and 1alpha-methyl Trp. Immunohistochemical localization showed IDO to be induced in cells of both endocrine, including pancreatic duodenal homeobox 1-positive beta-cells, and nonendocrine origin. We postulate that in the short term, IDO activation may protect islets from cytotoxic damage, although chronic exposure to various Trp metabolites could equally lead to beta-cell attrition.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The increased association between depression and diabetes mellitus is generally acknowledged. Recent studies suggest that depression leads to diabetes. However, the underlying molecular mechanisms for this association remain unclear. Literature and our data indicate that inflammatory and/or stress factors in depression up-regulate tryptophan (TRP) conversion into kynurenine (KYN), a substrate for nicotinamide adenine dinucleotide (NAD) biosynthesis. Deficiency of vitamin B6, a cofactor of the key enzymes of KYN - NAD pathway, shunts KYN metabolism from formation of NAD towards production of xanthurenic (XA) and kynurenic (KYNA) acids. Human and experimental studies reveal that XA, KYNA and their metabolites interfere with production, release and biological activity of insulin. We propose that inflammation- and/or stress-induced up-regulation of TRP - KYN metabolism in combination with vitamin B6 deficiency is one of the mechanisms mediating increased risk of diabetes in depression. Consequently, monitoring formation of diabetogenic KYN derivatives might help to identify subjects-at-risk for the development of diabetes. Pharmacological down-regulation of the TRP - KYN - NAD pathway and maintenance of adequate vitamin B6 status might help to prevent the development of diabetes in depression and other conditions associated with inflammation/stress- induced excessive production of KYN and vitamin B6 deficiency, e.g., obesity, cardiovascular diseases, aging, menopause, pregnancy, and hepatitis C virus infection.
    Journal of bioinformatics and diabetes. 09/2013; 1(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of hepatic tryptophan 2,3 dioxygenase (TDO) was assessed in the provocation of stress-induced depression-related behaviour in the rat. TDO drives tryptophan metabolism via the kynurenine pathway (KP) and leads to the production of neuroactive metabolites including kynurenine. A single 2 h period of restraint stress in adult male Sprague-Dawley rats provoked an increase in circulating concentrations of the glucocorticoid corticosterone and induction of hepatic TDO expression and activity. Repeated exposure to stress (10 d of 2 h restraint each day) provoked an increase in immobility in the forced swimming test (FST) indicative of depression-related behaviour. Immobility was accompanied by an increase in the circulating corticosterone concentrations, expression and activity of hepatic TDO and increase in the expression of TDO in the cerebral cortex. Increased TDO activity was associated with raised circulating kynurenine concentrations and a reduction in circulating tryptophan concentrations indicative of KP activation. Co-treatment with the TDO inhibitor allopurinol (20 mg/kg, i.p.), attenuated the chronic stress-related increase in immobility in the FST and the accompanying increase in circulating kynurenine concentrations. These findings indicate that stress-induced corticosterone and consequent activation of hepatic TDO, tryptophan metabolism and production of kynurenine provoke a depression-related behavioural phenotype. Inhibition of stress-related hepatic TDO activity promotes antidepressant activity. TDO may therefore represent a promising target for the treatment of depression associated with stress-related disorders in which there is evidence for KP activation.
    The International Journal of Neuropsychopharmacology 01/2014; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Marked infiltration of inflammatory cells such as activated T cells producing interferon-γ (IFN-γ) is observed in severe pulpitis. However, the roles of IFN-γ in the innate immune response of dental pulp have not been reported. Indoleamine 2, 3-dioxygenase (IDO) is a regulator of immune responses, and the IDO expression is induced by IFN-γ in many cells whose expression in dental pulp is unknown. The purpose of this study was to determine the role of IFN-γ in the immune response through microbial pattern recognition receptors (PRRs) such as Toll-like receptors or nucleotide-binding oligomerization domain–like receptors on the production of proinflammatory cytokines such as CXCL10 and interleukin (IL)-6 and the expression of IDO in cultured human dental pulp cells (HDPCs). Methods HDPCs were established from explant cultures of healthy pulp tissues. CXCL10 and IL-6 production was determined using enzyme-linked immunosorbent assay. Confirmation of IDO localization in dental pulp tissues was examined using immunohistochemistry. IDO expression in HDPCs was analyzed by immunoblot. Results IFN-γ significantly up-regulated CXCL10 and IL-6 production in the HDPCs stimulated with ligands for PRRs in a concentration-dependent manner. The expression of IDO was detected in inflamed pulp tissue. In addition, IFN-γ in combination with the PRR ligands enhanced IDO expression in HDPCs compared with IFN-γ alone. Moreover, CXCL10 production in IFN-γ–stimulated HDPCs was inhibited by an IDO inhibitor. Conclusions This study showed the synergistic effects by IFN-γ on cytokine production and IDO expression in HDPCs, suggesting that IFN-γ may modulate the innate immune response of dental pulp.
    Journal of Endodontics 09/2014; · 2.79 Impact Factor