Article

Intracellular cAMP: the "switch" that triggers on "spontaneous transient outward currents" generation in freshly isolated myocytes from thoracic aorta

University of Geneva, Genève, Geneva, Switzerland
AJP Cell Physiology (Impact Factor: 3.67). 05/2007; 292(4):C1502-9. DOI: 10.1152/ajpcell.00522.2006
Source: PubMed

ABSTRACT Spontaneous transient outward currents (STOCs) have been reported in resistance and small arteries but have not yet been found in thoracic aorta. Do thoracic aorta myocytes possess cellular machinery that generates STOCs? It was found that the majority of aortic myocytes do not generate STOCs. STOCs were generated in 8.7% of freshly isolated aortic myocytes. Myocytes that did not generate STOCs we have called "silent" myocytes and myocytes with STOCs have been called "active." STOCs recorded in active myocytes were voltage dependent and were inhibited by ryanodine, caffeine, and charybdotoxin. Forskolin was reported to increase STOCs frequency in myocytes isolated from resistance arteries. Forskolin (10 microM) triggered STOCs generation in 35.1% of silent aortic myocytes. In 36.8% percent of silent myocytes, forskolin did not trigger STOCs but increased the amplitude of charybdotoxin-sensitive outward net current to 136.1 +/- 8.5% at 0 mV. Membrane-permeable 8BrcAMP triggered STOCs generation in 38.7% of silent myocytes. Forskolin- or 8BrcAMP-triggered STOCs were inhibited by charybdotoxin. 8BrcAMP also increased open probability of BK(Ca) channels in BAPTA-AM-pretreated cells. Our data demonstrate that, in contrast to resistance arteries, STOCs are present just in the minority of myocytes in the thoracic aorta. However, cellular machinery that generates STOCs can be "switched" on by cAMP. Such an inactive cellular mechanism could modulate the contractility of the thoracic aorta in response to physiological demand.

0 Followers
 · 
66 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we used barium currents through voltage gated L-type calcium channels (recorded in freshly isolated cells with a conventional patch-clamp technique) to elucidate the cellular action mechanism for volatile anesthetics. It was found that halothane and isoflurane inhibited (dose-dependently and voltage independently) Ba(2+) currents through voltage gated Ca(2+) channels. Half maximal inhibitions occurred at 0.64±0.07mM and 0.86±0.1mM. The Hill slope value was 2 for both volatile anesthetics, suggesting the presence of more than one interaction site. Current inhibition by volatile anesthetics was prominent over the whole voltage range without changes in the peak of the current voltage relationship. Intracellular infusion of the GDPβS (100μM) together with staurosporine (200nM) did not prevent the inhibitory effect of volatile anesthetics. Unlike pharmacological Ca(2+) channel blockers, volatile anesthetics blocked Ca(2+) channel currents at resting membrane potentials. In other words, halothane and isoflurane induced an 'initial block'. After the first 4-7 control pulses, the cells were left unstimulated and anesthetics were applied. The first depolarization after the pause evoked a Ca(2+) channel current whose amplitude was reduced to 41±3.4% and to 57±4.2% of control values. In an analysis of the steady-state inactivation curve for voltage dependence, volatile anesthetics induced a negative shift of the 50% inactivation of the calcium channels. By contrast, the steepness factor characterizing the voltage sensitivity of the channels was unaffected. Unitary L-type Ca(2+) channels blockade occurred under cell-attached configuration, suggesting a possible action of volatile anesthetics from within the intracellular space or from the part of the channel inside the lipid bilayer.
    Cell calcium 08/2013; DOI:10.1016/j.ceca.2013.07.001 · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.
    Journal of Molecular Neuroscience 04/2014; 54(3). DOI:10.1007/s12031-014-0301-z · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that protein kinase A (PKA) inhibits K2P currents activated by protein kinase C (PKC) in freshly isolated aortic myocytes. PDBu, the PKC agonist, applied extracellularly, increased the amplitude of the K2P currents in the presence of the "cocktail" of K(+) channel blockers. Gö 6976 significantly reduced the increase of the K2P currents by PDBu suggesting the involvement of either α or β isoenzymes of PKC. We found that forskolin, or membrane permeable cAMP, did not inhibit K2P currents activated by the PKC. However, when PKA agonists were added prior to PDBu, they produced a strong decrease in the K2P current amplitudes activated by PKC. Inhibition of PDBu-elicited K2P currents by cAMP agonists was not prevented by the treatment of vascular smooth muscle cells with PKA antagonists (H-89 and Rp-cAMPs). Zn(2+) and Hg(2+) inhibited K2P currents in one population of cells, produced biphasic responses in another population, and increased the amplitude of the PDBu-elicited K(+) currents in a third population of myocytes, suggesting expression of several K2P channel types. We found that cAMP agonists inhibited biphasic responses and increase of amplitude of the PDBu-elicited K2P currents produced by Zn(2+) and Hg(2). 6-Bnz-cAMp produced a significantly altered pH sensitivity of PDBu-elicited K2P-currents, suggesting the inhibition of alkaline-activated K2P-currents. These results indicate that 6-Bnz-cAMP and other cAMP analogs may inhibit K2P currents through a PKA-independent mechanism. cAMP analogs may interact with unidentified proteins involved in K2P channel regulation. This novel cellular mechanism could provide insights into the interplay between PKC and PKA pathways that regulate vascular tone.
    PLoS ONE 09/2013; 8(9):e75077. DOI:10.1371/journal.pone.0075077 · 3.53 Impact Factor

Full-text (2 Sources)

Download
17 Downloads
Available from
May 20, 2014