Article

Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients

Southmead Hospital, and University of Bristol, Bristol, UK.
Arthritis & Rheumatology (Impact Factor: 7.87). 01/2007; 56(1):177-87. DOI: 10.1002/art.22285
Source: PubMed

ABSTRACT To determine whether it is possible to engineer 3-dimensional hyaline cartilage using mesenchymal stem cells derived from the bone marrow (BMSCs) of patients with osteoarthritis (OA).
Expanded BMSCs derived from patients with hip OA were seeded onto polyglycolic acid scaffolds and differentiated using transforming growth factor beta3 in the presence or absence of parathyroid hormone-related protein (PTHrP) to regulate hypertrophy. Micromass pellet cultures were established using the same cells for comparison. At the end of culture, the constructs or pellets were processed for messenger RNA (mRNA) analysis by quantitative real-time reverse transcription-polymerase chain reaction. Matrix proteins were analyzed using specific assays.
Cartilage constructs engineered from BMSCs were at least 5 times the weight of equivalent pellet cultures. Histologic, mRNA, and biochemical analyses of the constructs showed extensive synthesis of proteoglycan and type II collagen but only low levels of type I collagen. The protein content was almost identical to that of cartilage engineered from bovine nasal chondrocytes. Analysis of type X collagen mRNA revealed a high level of mRNA in chondrogenic constructs compared with that in undifferentiated BMSCs, indicating an increased risk of hypertrophy in the tissue-engineered cells. However, the inclusion of PTHrP at a dose of 1 microM or 10 microM during the culture period resulted in significant suppression of type X collagen mRNA expression and a significant decrease in alkaline phosphatase activity, without any loss of the cartilage-specific matrix proteins.
Three-dimensional hyaline cartilage can be engineered using BMSCs from patients with OA. This method could thus be used for the repair of cartilage lesions.

0 Bookmarks
 · 
107 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Articular cartilage has a limited capacity to repair following injury. Early intervention is required to prevent progression of focal traumatic chondral and osteochondral defects to advanced cartilage degeneration and osteoarthritis. Novel cell-based tissue engineering techniques have been proposed with the goal of resurfacing defects with bioengineered tissue that recapitulates the properties of hyaline cartilage and integrates into native tissue. Transplantation of mesenchymal stem cells (MSCs) is a promising strategy given the high proliferative capacity of MSCs and their potential to differentiate into cartilage-producing cells - chondrocytes. MSCs are historically harvested through bone marrow aspiration, which does not require invasive surgical intervention or cartilage extraction from other sites as required by other cell-based strategies. Biomaterial matrices are commonly used in conjunction with MSCs to aid cell delivery and support chondrogenic differentiation, functional extracellular matrix formation and three-dimensional tissue development. A number of specific transplantation protocols have successfully resurfaced articular cartilage in animals and humans to date. In the clinical literature, MSC-seeded scaffolds have filled a majority of defects with integrated hyaline-like cartilage repair tissue based on arthroscopic, histologic and imaging assessment. Positive functional outcomes have been reported at 12 to 48 months post-implantation, but future work is required to assess long-term outcomes with respect to other treatment modalities. Despite relatively positive outcomes, further investigation is required to establish a consensus on techniques for treatment of chondral and osteochondral defects with respect to cell source, isolation and expansion, implantation density, in vitro precultivation, and scaffold composition. This will allow for further optimization of MSC proliferation, chondrogenic differentiation, bioengineered cartilage integration, and clinical outcome.
    Arthritis Research & Therapy 09/2014; 16:432. DOI:10.1186/s13075-014-0432-1 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrocyte death and loss of extracellular matrix are the central features in articular cartilage degeneration during osteoarthritis pathogenesis. Cartilage diseases and, in particular, osteoarthritis are widely correlated to apoptosis but, chondrocytes undergoing apoptosis "in vivo" more often display peculiar features that correspond to a distinct process of programmed cell death termed "chondroptosis". Programmed cell death of primary human chondrocyte has been here investigated in micromasses, a tridimensional culture model, that represents a convenient means for studying chondrocyte biology. Cell death has been induced by different physical or chemical apoptotic agents, such as UVB radiation, hyperthermia and staurosporine delivered at both 1 and 3 weeks maturation. Conventional electron microscopy was used to analyse morphological changes. Occurrence of DNA fragmentation and caspase involvement were also investigated. At Transmission Electron Microscopy, control cells appear rounding or slightly elongated with plurilobated nucleus and diffusely dispersed chromatin. Typically UVB radiation and staurosporine induce chromatin apoptotic features, while hyperthermia triggers the "chondroptotic" phenotype. A weak TUNEL positivity appears in control, correlated to the well known cell death patterns occurring along cartilage differentiation. UVB radiation produces a strong positivity, mostly localized at the micromass periphery. After hyperthermia a higher number of fluorescent nuclei appears, in particular at 3 weeks. Staurosporine evidences a diffuse, but reduced, positivity. Therefore, DNA fragmentation is a common pattern in dying chondrocytes, both in apoptotic and "chondroptotic" cells. Moreover, all triggers induce caspase pathway activation, even if to a different extent, suggesting a fundamental role of apoptotic features, in chondrocyte cell death.
    APOPTOSIS 07/2014; 19(10). DOI:10.1007/s10495-014-1017-9 · 3.61 Impact Factor

Full-text (2 Sources)

Download
14 Downloads
Available from
Oct 14, 2014

Wael Kafienah