Article

CAR2 displays unique ligand binding and RXRalpha heterodimerization characteristics.

Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
Drug Metabolism and Disposition (Impact Factor: 3.33). 04/2007; 35(3):428-39. DOI: 10.1124/dmd.106.012641
Source: PubMed

ABSTRACT The constitutive androstane receptor (CAR; NR1I3) regulates the expression of genes involved in xenobiotic metabolism. Alternative splicing of the human CAR gene yields an array of mRNAs that encode structurally diverse proteins. One form of CAR, termed CAR2, contains an additional four amino acids (SPTV) that are predicted to reshape the ligand-binding pocket. The current studies show a marked, ligand-independent, CAR2-mediated transactivation of reporters containing optimal DR-3, DR-4, and DR-5 response elements, and reporters derived from the natural CYP2B6 and CYP3A4 gene promoters. Overexpression of the RXRalpha ligand binding domain was critical for achieving these effects. CAR2 interaction with SRC-1 was similarly dependent on the coexpression of RXRalpha. Mutagenesis of Ser233 (SPTV) to an alanine residue yielded a receptor possessing higher constitutive activity. Alternatively, mutating Ser233 to an aspartate residue drastically reduced the transactivation capacity of CAR2. The respective abilities of these mutagenized forms of CAR2 to transactivate a DR-4 x 3 reporter element correlated with their ability to interact with RxRalpha and to recruit SRC-1 in a ligand-regulated manner. Together, these results demonstrate a robust RXRalpha-dependent recruitment of coactivators and transactivation by CAR2. In addition, CAR2 displays novel dose responses to clotrimazole and androstanol compared with the reference form of the receptor while at the same time retaining the ability to bind CITCO. This result supports a hypothesis whereby the four-amino-acid insertion in CAR2 structurally modifies its ligand binding pocket, suggesting that CAR2 is regulated by a set of ligands distinct from those governing the activity of reference CAR.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The naturally occurring SV23 splice variant of human constitutive androstane receptor (hCAR-SV23) is activated by di-(2-ethylhexyl)phthalate (DEHP), which is detected as a contaminant in fetal bovine serum (FBS). In our initial experiment, we compared the effect of dialyzed FBS, charcoal-stripped, dextran-treated FBS (CS-FBS), and regular FBS on the basal activity and ligand-activation of hCAR-SV23 in a cell-based reporter gene assay. In transfected HepG2 cells cultured in medium supplemented with 10% FBS, basal hCAR-SV23 activity varied with the type of FBS (regular>dialyzed>CS). DEHP increased hCAR-SV23 activity when 10% CS-FBS, but not regular FBS or dialyzed FBS, was used. With increasing concentrations (1-10%) of regular FBS or CS-FBS, hCAR-SV23 basal activity increased, whereas in DEHP-treated cells, hCAR-SV23 activity remained similar (regular FBS) or slightly increased (CS-FBS). Subsequent experiments identified a serum-free culture condition to detect DEHP activation of hCAR-SV23. Under this condition, artemisinin, artemether, and arteether increased hCAR-SV23 activity, whereas they decreased it in cells cultured in medium supplemented with 10% regular FBS. By comparison, FBS increased the basal activity of the wild-type isoform of hCAR (hCAR-WT), whereas it did not affect the basal activity of the SV24 splice variant (hCAR-SV24) or ligand activation of hCAR-SV24 and hCAR-WT by 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). The use of serum-free culture condition was suitable for detecting CITCO activation of hCAR-WT and hCAR-SV24. In conclusion, FBS leads to erroneous classification of pharmacological ligands of hCAR-SV23 in cell-based assays, but investigations on functional ligands of hCAR isoforms can be conducted in serum-free culture condition.
    Toxicology and Applied Pharmacology 04/2014; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The constitutive androstane receptor (CAR; NR1I3) is a critical xenobiotic sensor that regulates xenobiotic metabolism, drug clearance, energy and lipid homeostasis, cell proliferation and development. Although constitutively active, in hepatocytes CAR is normally held quiescent through a tethering mechanism in the cytosol, anchored to a protein complex that includes several components, including heat shock protein 90. Release and subsequent nuclear translocation of CAR is triggered through either direct binding to ligand activators such as 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO), or through indirect chemical activation, such as with phenobarbital (PB). In this study, we demonstrate that proteasomal inhibition markedly disrupts CAR function, repressing CAR nuclear trafficking, disrupting CAR's interaction with nuclear co-activators and inhibiting induction of CAR target gene responses in human primary hepatocytes following treatment with either PB or CITCO. Paradoxically, these effects occur following accumulation of ubiquitinated hCAR and its interaction with the SUG1 subunit of the 26S proteasome. Together, these data demonstrate that the proteasome complex functions at multiple levels to regulate the functional biology of hCAR activity.
    Biochemical Journal 11/2013; · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of US adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα) and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/mL) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/mL. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187 and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/mL). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/mL) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2 and an antagonist for human PPARα.
    Toxicological Sciences 05/2014; · 4.48 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
Oct 2, 2014