Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure.

Department of Urology, National Taiwan University College of Medicine, Taipei, Taiwan.
Toxicology and Applied Pharmacology (Impact Factor: 3.98). 02/2007; 218(2):99-106. DOI: 10.1016/j.taap.2006.09.021
Source: PubMed

ABSTRACT Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As(III)+As(V)), monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA(V) and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA(V) and MMA(V). Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA(V), lower percent DMA(V), higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework.
    Environmental health : a global access science source. 06/2014; 13(1):44.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scientific debate surrounds the regulatory approach for evaluating carcinogenic risk of arsenic compounds. The arsenic ambient water quality criteria (AWQC), based on the assumption of a linear mode of action for skin cancer risk, results in an allowable limit of 0.018 ppb in ambient waters; the drinking water Maximum Contaminant Level (MCL) was determined using a similar linear approach. Integration of results from recent studies investigating arsenic’s mode of action provide the basis for a change in the approach for conducting an arsenic cancer risk assessment. Results provide support for a concentration demonstrating a dose-dependent transition in response from those representing adaptive changes to those that may be key events in the development of cancer endpoints. While additional information is needed, integration of current research results provides insight for a new quantitative cancer risk assessment methodology as an alternative toxicologically-based dose response (BBDR) cancer modeling. Integration of the new experimental results, combined with epidemiological evidence, support a dose-dependent transition concentration of approximately 0.1 μM arsenic. Some uncertainties remain; additional information from chronic in vitro studies underway is needed. Results to date also provide initial insight into variability in population response at low arsenic exposures.
    Regulatory Toxicology and Pharmacology 01/2014; · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oral exposure to inorganic arsenic (iAs) is associated with adverse health effects. Epidemiological studies suggest differences in susceptibility to these health effects, possibly due to genotypic variation. Genetic polymorphisms in iAs metabolism could lead to increased susceptibility by altering urinary iAs metabolite concentrations. To examine the impact of genotypic polymorphisms on iAs metabolism. We screened 360 publications from PubMed and Web of Science for data on urinary mono- and dimethylated arsenic (MMA and DMA) percentages and polymorphic genes encoding proteins that are hypothesized to play roles in arsenic metabolism. The genes we examined were arsenic (+3) methyltransferase (AS3MT), glutathione-s-transferase omega (GSTO), and purine nucleoside phosphorylase (PNP). Relevant data were pooled to determine which polymorphisms are associated across studies with changes in urinary metabolite concentration. In our review, AS3MT polymorphisms rs3740390, rs11191439, and rs11191453 were associated with statistically significant changes in percent urinary MMA. Studies of GSTO polymorphisms did not indicate statistically significant associations with methylation, and there are insufficient data on PNP polymorphisms to evaluate their impact on metabolism. Collectively, these data support the hypothesis that AS3MT polymorphisms alter in vivo metabolite concentrations. Preliminary evidence suggests that AS3MT genetic polymorphisms may impact disease susceptibility. GSTO polymorphisms were not associated with iAs-associated health outcomes. Additional data are needed to evaluate the association between PNP polymorphisms and iAs-associated health outcomes. Delineation of these relationships may inform iAs mode(s) of action and the approach for evaluating low-dose health effects for iAs. Genotype impacts urinary iAs metabolite concentrations and may be a potential mechanism for iAs-related disease susceptibility.
    Environmental Research 04/2014; 132C:156-167. · 3.24 Impact Factor


1 Download
Available from