Article

Research update: neurogenesis in adult brain and neuropsychiatric disorders.

Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
Mount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine (Impact Factor: 1.56). 12/2006; 73(7):931-40.
Source: PubMed

ABSTRACT Until recently neurogenesis in mammals was considered to occur only during the embryonic and early post-natal periods and to have no significant role in the adult nervous system. However, it is now accepted that neurogenesis occurs in two brain regions in adult mammals, namely, the hippocampus and olfactory bulb. In both regions new neurons arise from a resident population of neural progenitor cells that are maintained throughout adult life. Hippocampal neurogenesis is required for some types of hippocampal-dependent learning. Many factors enhance hippocampal neurogenesis including hormones, growth factors, drugs, neurotransmitters, and physical exercise as well as learning a hippocampal-dependent task. Other factors suppress hippocampal neurogenesis; these include aging, stress, glucocorticoids and stimuli that activate the pituitary/adrenal axis. Recently much attention has become focused on the relevance of hippocampal neurogenesis to the pathophysiology and treatment of mood disorders. Indeed all major pharmacological and non-pharmacological treatments for depression enhance hippocampal neurogenesis and suppressing hippocampal neurogenesis in mice blocks behavioral responses in some antidepressant-sensitive tests. Altered hippocampal neurogenesis may also play a pathophysiological role in neurodegenerative disorders such as Alzheimer's disease. How much neurogenesis occurs normally in other brain regions is unclear. Neural progenitors are found throughout the neuraxis including both neurogenic and non-neurogenic regions. When cultured in vitro or isolated and transplanted back into neurogenic brain regions, these cells can differentiate into neurons although in their in situ location they seem to behave as lineage-restricted glial progenitors. The environmental cues that limit the potential of progenitor cells in non-neurogenic brain regions are unknown. However, an emerging view is that astrocytes, a subset of which also functions as neural progenitor cells, are critical in regulating the local environment. After transplantation into adult brain, neural stem cells are capable of surviving and differentiating into both neurons and glial cells, offering hope that stem cell therapy may be utilized to treat a variety of neurological and perhaps psychiatric disorders. The widespread existence of endogenous neural progenitors even in non-neurogenic brain regions also offers hope that the potential of these cells may be harnessed to repair cellular injuries caused by injuries such as stroke, trauma or neurodegenerative diseases. While obstacles remain to both approaches, stem-cell-based therapies remain an area of intense research interest.

3 Followers
 · 
307 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress hormones are strong modulators of brain activity. Given the adaptive nature of stress, hormones released during stress response influence a myriad of brain phenomena including development, plasticity, neurogenesis, homeostasis, central immune response and cognition. In addition to the well-known role of neurons in the stress-brain interaction, glial cells have recently become crucial for the knowledge of this topic. Glial cells are viewed now as important as neurons for the normal function of the brain. There is a growing body of knowledge showing that glial cells crucially affect brain development, homeostasis, synaptic
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is associated with macrovascular and microvascular complications and is a major risk factor for neurological and psychiatric disorders, such as dementia and depression. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) have distinct etiologies and pathophysiological effects while sharing a common endpoint of persistent hyperglycemia. Neuroimaging studies in T1DM have revealed reductions in numerous regions, including the parahippocampal and occipital regions, while in T2DM there have been numerous reports of hippocampal atrophy. This meta-analysis aimed to identify consistent regional abnormalities in cerebral structures in T1DM and T2DM respectively, and also to examine the impact of potential confounds, including age, depression and vascular risk factors. Neuroimaging studies of both voxel-based morphometry (VBM) data and volumetric data were included. Ten T1DM studies (n = 613 patients) and 23 T2DM studies (n = 1364 patients) fulfilled inclusion criteria. The T1DM meta-analysis revealed reduced bilateral thalamus grey matter density in adults. The T2DM meta-analysis revealed reduced global brain volume and regional atrophy in the hippocampi, basal ganglia, and orbitofrontal and occipital lobes. Moreover, hippocampal atrophy in T2DM was not modified by hypertension, although there were more marked reductions in younger patients relative to healthy controls. In conclusion, T1DM and T2DM demonstrated distinct cerebral effects with generalised and specific target areas of grey matter reduction. Thalamic atrophy in T1DM may be a substrate of associated cognitive deficits. In T2DM, global cerebral atrophy may reflect atherosclerotic factors, while hippocampal atrophy was an independent effect providing a potential common neuropathological etiology for the comorbidity of T2DM with dementia and depression.
    Brain Imaging and Behavior 01/2015; DOI:10.1007/s11682-014-9348-2 · 3.39 Impact Factor
  • Source
    Neuro-immune interaction in the adult central nervous system, 01/2013: chapter 1: pages 1-22;

Full-text (2 Sources)

Download
184 Downloads
Available from
May 20, 2014