Article

Brucella abortus bacA mutant induces greater pro-inflammatory cytokines than the wild-type parent strain.

Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
Microbes and Infection (Impact Factor: 2.73). 02/2007; 9(1):55-62. DOI: 10.1016/j.micinf.2006.10.008
Source: PubMed

ABSTRACT The inner-membrane protein BacA affects Brucella LPS structure. A bacA deletion mutant of Brucella abortus, known as KL7 (bacA(mut)-KL7), is attenuated in BALB/c mice and protects against challenge. Thus, bacA mutation was a candidate for incorporation into live attenuated vaccines. We assessed bacA(mut)-KL7 in 2 additional mouse strains: the more resistant C57BL/6 that produces interferon-gamma throughout the infection and the highly susceptible interferon-gamma-deficient C57BL/6 in which brucellae exhibit continual exponential growth. While it was hypothesized that bacA(mut)-KL7 would exhibit even greater attenuation relative to its parent strain B. abortus 2308 in C57BL/6 mice than it did in BALB/c mice, this was not the case. Moreover, it was more pathogenic in C57BL/6 interferon-gamma-deficient mice than 2308 causing abscesses and wasting even though the splenic loads of bacA(mut)-KL7 were significantly lower. These 2 observations were correlated, respectively, with an ability of IFNgamma-activated macrophages to equivalently control strains 2308 and bacA(mut)-KL7 and the ability of bacA(mut)-KL7 organism and its LPS to induce greater amounts of pro-inflammatory cytokines than 2308. We conclude that attenuation properties of bacA mutation are dependent upon the nature of the host but more importantly that bacterial gene deletion can result in increased host pathology without an increase in bacterial load, crucial considerations for vaccine design.

Download full-text

Full-text

Available from: Radhika Goenka, Jul 02, 2015
0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, pathogenic Brucella species cause a febrile illness known as brucellosis. A key pathogenic trait of this group of organisms is their ability to survive in immune cells and persist in tissues of the reticuloendothelial system, a process that requires the function of a Type IV secretion system. In contrast to other well-studied Gram-negative bacteria, Brucella spp. do not cause inflammation at the site of invasion, but have a latency period of 2-4 weeks before the onset of symptoms. This review discusses several mechanisms that allow Brucella spp. both to evade detection by pattern recognition receptors of the innate immune system and suppress their signalling. In contrast to these stealth features, the VirB Type IV secretion system, which mediates survival within phagocytic cells, stimulates innate immune responses in vivo. The responses stimulated by this virulence factor are sufficient to check bacterial growth, but not to elicit sterilizing immunity. The result is a stand-off between host and pathogen that results in persistent infection.
    Cellular Microbiology 09/2010; 12(9):1195-202. DOI:10.1111/j.1462-5822.2010.01498.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sinorhizobium meliloti is a beneficial legume symbiont, closely related to Brucella species, which are chronic mammalian pathogens. We discovered that the S. meliloti MsbA2 protein is essential to ensure the symbiotic interaction with the host plant, alfalfa. S. meliloti invades plant cells via plant-derived structures known as infection threads. However, in the absence of MsbA2, S. meliloti remains trapped within abnormally thickened infection threads and induces a heightened plant defence response, characterized by a substantial thickening of the nodule endodermis layer and the accumulation of polyphenolic compounds. The S. meliloti MsbA2 protein is homologous to the Escherichia coli lipopolysaccharide/phospholipid trafficking protein MsbA. However, MsbA2 was not essential for the membrane transport of either lipopolysaccharide or phospholipids in S. meliloti. We determined that the msbA2 gene is transcribed in free-living S. meliloti and that in the absence of MsbA2 the polysaccharide content of S. meliloti is altered. Consequently, we propose a model whereby the altered polysaccharide content of the S. meliloti msbA2 mutant could be responsible for its symbiotic defect by inducing an inappropriate host response.
    Microbiology 05/2008; 154(Pt 4):1258-70. DOI:10.1099/mic.0.2007/014894-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163-1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains.
    PLoS Genetics 10/2008; 4(9):e1000185. DOI:10.1371/journal.pgen.1000185