Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat

University of California, Berkeley, Berkeley, California, United States
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 02/2007; 27(1):180-9. DOI: 10.1523/JNEUROSCI.3227-06.2007
Source: PubMed

ABSTRACT Experience-dependent plasticity during development results in the emergence of highly adapted representations of the external world in the adult brain. Previous studies have convincingly shown that the primary auditory cortex (A1) of the rat possesses a postnatal period of sensory input-driven plasticity but its precise timing (onset, duration, end) has not been defined. In the present study, we examined the effects of pure-tone exposure on the auditory cortex of developing rat pups at different postnatal ages with a high temporal resolution. We found that pure-tone exposure resulted in profound, persistent alterations in sound representations in A1 only if the exposure occurred during a brief period extending from postnatal day 11 (P11) to P13. We also found that postnatal sound exposure in this epoch led to striking alterations in the cortical representation of sound intensity.


Available from: Etienne de Villers-Sidani, Jan 14, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain development is largely shaped by early sensory experience. However, it is currently unknown whether, how early, and to what extent the newborn's brain is shaped by exposure to maternal sounds when the brain is most sensitive to early life programming. The present study examined this question in 40 infants born extremely prematurely (between 25- and 32-wk gestation) in the first month of life. Newborns were randomized to receive auditory enrichment in the form of audio recordings of maternal sounds (including their mother's voice and heartbeat) or routine exposure to hospital environmental noise. The groups were otherwise medically and demographically comparable. Cranial ultrasonography measurements were obtained at 30 ± 3 d of life. Results show that newborns exposed to maternal sounds had a significantly larger auditory cortex (AC) bilaterally compared with control newborns receiving standard care. The magnitude of the right and left AC thickness was significantly correlated with gestational age but not with the duration of sound exposure. Measurements of head circumference and the widths of the frontal horn (FH) and the corpus callosum (CC) were not significantly different between the two groups. This study provides evidence for experience-dependent plasticity in the primary AC before the brain has reached full-term maturation. Our results demonstrate that despite the immaturity of the auditory pathways, the AC is more adaptive to maternal sounds than environmental noise. Further studies are needed to better understand the neural processes underlying this early brain plasticity and its functional implications for future hearing and language development.
    Proceedings of the National Academy of Sciences 02/2015; 112(10). DOI:10.1073/pnas.1414924112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synapses are plastic and can be modified by changes in spike timing. Whereas most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ∼10 ms. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation and adjusted the excitatory-inhibitory ratio of events paired with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 04/2015; DOI:10.1016/j.neuron.2015.03.014 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vocal production, which requires the generation and integration of laryngeal and respiratory motor patterns, can be impaired in dystonia, a disorder believed due to dysfunction of sensorimotor pathways in the central nervous system. Herein, we analyze vocal and respiratory abnormalities in the dystonic (dt) rat, a well-characterized model of generalized dystonia. The dt rat is a recessive mutant with haploinsufficiency of Atcay which encodes the neuronally restricted protein caytaxin. Olivocerebellar functional abnormalities are central to the dt rat's truncal and appendicular dystonia and could also contribute to vocal and respiratory abnormalities in this model system. Differences in vocal repertoire composition were found between homozygote and wild-type dt rat pups developing after 3 weeks of life. Those spectro-temporal differences were not paralleled by differences in vocal activity or maximum lung pressures during quiet breathing and vocalization. However, breathing rhythm was slower in homozygote pups. This slower breathing rhythm persisted into adulthood. Given that cerebellectomy eliminates truncal and appendicular dystonia in the dt rat, we hypothesize that the altered breathing patterns stem either from a disturbance in the maturation of respiratory pattern generators or from deficient extracerebellar caytaxin expression affecting normal respiratory pattern generation. The altered breathing rhythm associated with vocal changes in the murine model resembles aspects of vocal dysfunction that are seen in humans with sporadic dystonia. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
    04/2015; 3(4). DOI:10.14814/phy2.12350