Article

Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat

University of California, Berkeley, Berkeley, California, United States
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 02/2007; 27(1):180-9. DOI: 10.1523/JNEUROSCI.3227-06.2007
Source: PubMed

ABSTRACT Experience-dependent plasticity during development results in the emergence of highly adapted representations of the external world in the adult brain. Previous studies have convincingly shown that the primary auditory cortex (A1) of the rat possesses a postnatal period of sensory input-driven plasticity but its precise timing (onset, duration, end) has not been defined. In the present study, we examined the effects of pure-tone exposure on the auditory cortex of developing rat pups at different postnatal ages with a high temporal resolution. We found that pure-tone exposure resulted in profound, persistent alterations in sound representations in A1 only if the exposure occurred during a brief period extending from postnatal day 11 (P11) to P13. We also found that postnatal sound exposure in this epoch led to striking alterations in the cortical representation of sound intensity.

Download full-text

Full-text

Available from: Etienne de Villers-Sidani, Jan 14, 2015
0 Followers
 · 
174 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vocal production, which requires the generation and integration of laryngeal and respiratory motor patterns, can be impaired in dystonia, a disorder believed due to dysfunction of sensorimotor pathways in the central nervous system. Herein, we analyze vocal and respiratory abnormalities in the dystonic (dt) rat, a well-characterized model of generalized dystonia. The dt rat is a recessive mutant with haploinsufficiency of Atcay which encodes the neuronally restricted protein caytaxin. Olivocerebellar functional abnormalities are central to the dt rat's truncal and appendicular dystonia and could also contribute to vocal and respiratory abnormalities in this model system. Differences in vocal repertoire composition were found between homozygote and wild-type dt rat pups developing after 3 weeks of life. Those spectro-temporal differences were not paralleled by differences in vocal activity or maximum lung pressures during quiet breathing and vocalization. However, breathing rhythm was slower in homozygote pups. This slower breathing rhythm persisted into adulthood. Given that cerebellectomy eliminates truncal and appendicular dystonia in the dt rat, we hypothesize that the altered breathing patterns stem either from a disturbance in the maturation of respiratory pattern generators or from deficient extracerebellar caytaxin expression affecting normal respiratory pattern generation. The altered breathing rhythm associated with vocal changes in the murine model resembles aspects of vocal dysfunction that are seen in humans with sporadic dystonia. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
    04/2015; 3(4). DOI:10.14814/phy2.12350
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In both humans and rodents, decline in cognitive function is a hallmark of the aging process; the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modeling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1) as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA), parvalbumin (PV), somatostatin (SOM), calretinin (CR), vasoactive intestinal peptide (VIP), choline acetyltransferase (ChAT), neuropeptide Y (NPY), and cholecystokinin (CCK) to document the changes observed in interneuron populations across the rat's lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV) and somatostatin (SOM) expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signaling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes.
    Frontiers in Neuroanatomy 06/2014; 8:40. DOI:10.3389/fnana.2014.00040 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory systems do not work in isolation; instead, they show interactions that are specifically uncovered during sensory loss. To identify and characterize these interactions, we investigated whether visual deprivation leads to functional enhancement in primary auditory cortex (A1). We compared sound-evoked responses of A1 neurons in visually deprived animals to those from normally reared animals. Here, we show that visual deprivation leads to improved frequency selectivity as well as increased frequency and intensity discrimination performance of A1 neurons. Furthermore, we demonstrate in vitro that in adults visual deprivation strengthens thalamocortical (TC) synapses in A1, but not in primary visual cortex (V1). Because deafening potentiated TC synapses in V1, but not A1, crossmodal TC potentiation seems to be a general property of adult cortex. Our results suggest that adults retain the capability for crossmodal changes whereas such capability is absent within a sensory modality. Thus, multimodal training paradigms might be beneficial in sensory-processing disorders.
    Neuron 02/2014; 81(3):664-73. DOI:10.1016/j.neuron.2013.11.023 · 15.98 Impact Factor