The actin cytoskeleton regulates exocytosis of all neutrophil granule subsets

Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States
AJP Cell Physiology (Impact Factor: 3.78). 06/2007; 292(5):C1690-700. DOI: 10.1152/ajpcell.00384.2006
Source: PubMed


A comprehensive analysis of the role of the actin cytoskeleton in exocytosis of the four different neutrophil granule subsets had not been performed previously. Immunoblot analysis showed that, compared with plasma membrane, there was less actin associated with secretory vesicles (SV, 75%), gelatinase granules (GG, 40%), specific granules (SG, 10%), and azurophil granules (AG, 5%). Exocytosis of SV, SG, and AG was measured as increased plasma membrane expression of CD35, CD66b, and CD63, respectively, with flow cytometry, and GG exocytosis was measured as gelatinase release with an ELISA. N-formylmethionyl-leucyl-phenylalanine (FMLP) stimulated exocytosis of SV, GG, and SG with an ED(50) of 15, 31, and 28 nM, respectively, with maximal response at 10(-7) M FMLP by 5 min, while no exocytosis of AG was detected. Disruption of the actin cytoskeleton by latrunculin A and cytochalasin D induced a decrease in FMLP-stimulated CD35 expression after an initial increase. Both drugs enhanced the rate and extent of FMLP-stimulated GG, SG, and AG exocytosis, while the EC(50) for FMLP was not altered. We conclude that the actin cytoskeleton controls access of neutrophil granules to the plasma membrane, thereby limiting the rate and extent of exocytosis of all granule subsets. Differential association of actin with the four granule subsets was not associated with graded exocytosis.

Download full-text


Available from: Kenneth R Mcleish,
  • Source
    • "The dampening of the TLR2-dependent immune response of human airway epithelium expressing CEACAM1 by soluble CEACAM8-Fc resembles the regulatory pathways recently identified for M. catarrhalis [15]. Mechanisms dampening inflammatory responses are interesting targets for subversion by microbes to reduce host sensing and avoiding recognition [8]. Therefore, Moraxella specific UspA1 expressed by the CEACAM1-binding pathogen M. catarrhalis resembles human soluble CEACAM8-Fc in its ability to reduce the TLR2-dependent immune responses of human airway epithelium. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lower respiratory tract bacterial infections are characterized by neutrophilic inflammation in the airways. The carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 8 is expressed in and released by human granulocytes. Our study demonstrates that human granulocytes release CEACAM8 in response to bacterial DNA in a TLR9-dependent manner. Individuals with a high percentage of bronchial lavage fluid (BALF) granulocytes were more likely to have detectable levels of released CEACAM8 in the BALF than those with a normal granulocyte count. Soluble, recombinant CEACAM8-Fc binds to CEACAM1 expressed on human airway epithelium. Application of CEACAM8-Fc to CEACAM1-positive human pulmonary epithelial cells resulted in reduced TLR2-dependent inflammatory responses. These inhibitory effects were accompanied by tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM) of CEACAM1 and by recruitment of the phosphatase SHP-1, which could negatively regulate Toll-like receptor 2-dependent activation of the phosphatidylinositol 3-OH kinase-Akt kinase pathway. Our results suggest a new mechanism by which granulocytes reduce pro-inflammatory immune responses in human airways via secretion of CEACAM8 in neutrophil-driven bacterial infections.
    PLoS ONE 04/2014; 9(4):e94106. DOI:10.1371/journal.pone.0094106 · 3.23 Impact Factor
  • Source
    • "Priming involves both molecular re-arrangements to change the activity and/or sub-cellular localisation of pre-existing molecules, and also activation of gene expression. Examples of the former processes include rapid phosphorylation of the cytosolic phox components of the NADPH oxidase [17] and cytoskeletal rearrangements to mobilise intracellular granules and secretory vesicles containing membrane proteins from the cytoplasm to the plasma membrane [45]. Priming also results in activation of de novo biosynthesis, for example for the generation of cytokines and chemokines. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophils are central to the pathology of inflammatory diseases, where they can damage host tissue through release of reactive oxygen metabolites and proteases, and drive inflammation via secretion of cytokines and chemokines. Many cytokines, such as those generated during inflammation, can induce a similar "primed" phenotype in neutrophils, but it is unknown if different cytokines utilise common or cytokine-specific pathways to induce these functional changes. Here, we describe the transcriptomic changes induced in control human neutrophils during priming in vitro with pro-inflammatory cytokines (TNF-α and GM-CSF) using RNA-seq. Priming led to the rapid expression of a common set of transcripts for cytokines, chemokines and cell surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1). However, 580 genes were differentially regulated by TNF-α and GM-CSF treatment, and of these 58 were directly implicated in the control of apoptosis. While these two cytokines both delayed apoptosis, they induced changes in expression of different pro- and anti-apoptotic genes. Bioinformatics analysis predicted that these genes were regulated via differential activation of transcription factors by TNF-α and GM-CSF and these predictions were confirmed using functional assays: inhibition of NF-κB signalling abrogated the protective effect of TNF-α (but not that of GM-CSF) on neutrophil apoptosis, whereas inhibition of JAK/STAT signalling abrogated the anti-apoptotic effect of GM-CSF, but not that of TNF-α (p<0.05). These data provide the first characterisation of the human neutrophil transcriptome following GM-CSF and TNF-α priming, and demonstrate the utility of this approach to define functional changes in neutrophils following cytokine exposure. This may provide an important, new approach to define the molecular properties of neutrophils after in vivo activation during inflammation.
    PLoS ONE 03/2013; 8(3):e58598. DOI:10.1371/journal.pone.0058598 · 3.23 Impact Factor
  • Source
    • "Cell surface expression of CD35, CD63, and CD66b was monitored for assessing degranulation of secretory, azurophilic, and specific granules, respectively, by flow cytometry, as previously described [23,24]. Briefly, non-specific binding of the antibodies was prevented by incubating the cells with PBS + 20% decomplemented autologous serum for 30 min on ice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Esenbeckia leiocarpa, a wide spread native Brazilian tree, was reported recently to possess anti-inflammatory effects in vivo, but the mechanisms involved are still not fully understood and its role in neutrophils is poorly documented. The aim of this study was to compare the effects of a crude hydroalcoholic extract (CHE) and an alkaloid-enriched (Alk) fraction obtained from Esenbeckia leiocarpa bark on human neutrophils by investigating the effect of each fraction alone or in a mixture with classical neutrophil agonists. CHE inhibited intracellular reactive oxygen species (ROS) production but increased the extracellular superoxide (O2-) production, while Alk increased the former and also slightly increased O2- production. We found that CHE and Alk also induced phagocytosis accompanied by Syk activation, adhesion and degranulation. However, neither CHE nor Alk potentiated the effect of classical neutrophil agonists, namely the cytokines GM-CSF for phagocytosis and TNF-α for adhesion or N-formyl-methionyl-leucyl-phenylalanine (fMLP) for degranulation. In addition, based on catalase treatment, CHE and Alk induced neutrophil apoptosis by a hydrogen peroxide (H2O2)-dependent mechanism. Since the elimination of apoptotic neutrophils by professional phagocytes is important for the resolution of inflammation, the ability of CHE and Alk to induce neutrophil apoptosis has to be considered as one possible mechanism associated with the anti-inflammatory activity of these fractions previously reported in vivo.
    Journal of Inflammation 05/2012; 9(1):19. DOI:10.1186/1476-9255-9-19 · 2.02 Impact Factor
Show more