New developments in the InterPro database.

EMBL Outstation-European Bioinformatics Institute Hinxton, Cambridge, UK.
Nucleic Acids Research (Impact Factor: 8.81). 02/2007; 35(Database issue):D224-8. DOI: 10.1093/nar/gkl841
Source: PubMed

ABSTRACT InterPro is an integrated resource for protein families, domains and functional sites, which integrates the following protein signature databases: PROSITE, PRINTS, ProDom, Pfam, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D and PANTHER. The latter two new member databases have been integrated since the last publication in this journal. There have been several new developments in InterPro, including an additional reading field, new database links, extensions to the web interface and additional match XML files. InterPro has always provided matches to UniProtKB proteins on the website and in the match XML file on the FTP site. Additional matches to proteins in UniParc (UniProt archive) are now available for download in the new match XML files only. The latest InterPro release (13.0) contains more than 13 000 entries, covering over 78% of all proteins in UniProtKB. The database is available for text- and sequence-based searches via a webserver (, and for download by anonymous FTP ( The InterProScan search tool is now also available via a web service at


Available from: Alberto Labarga, May 28, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this report, we investigate the altered APX2 expression 13 (alx13) mutation of Arabidopsis thaliana, a mutation in glutamine phosphoribosyl pyrophosphate amidotransferase 2 (ATASE2), the primary isoform of the enzyme mediating the first committed step of purine biosynthesis. Light-dependent leaf variegation was exhibited by alx13 plants, with partial shading of alx13 rosettes revealing that the development of chlorosis in emerging leaves is influenced by the growth irradiance of established leaves. Chlorotic sectors arose from emerging green alx13 leaves during a phase of rapid cell division and expansion, which shows that each new cell’s fate is independent of its progenitor. In conjunction with the variegated phenotype, alx13 plants showed altered high light stress responses, including changed expression of genes encoding proteins with antioxidative functions, impaired anthocyanin production and over-accumulation of reactive oxygen species. These characteristics were observed in both photosynthetically-normal green tissues and chlorotic tissues. Chlorotic tissues of alx13 leaves accumulated mRNAs of nuclear-encoded photosynthesis genes that are repressed in other variegated mutants of Arabidopsis. Thus, defective purine biosynthesis impairs chloroplast biogenesis in a light-dependent manner and alters the induction of high light stress pathways and nuclear-encoded photosynthesis genes.
    Functional Plant Biology 05/2011; 38(5):401-419. DOI:10.1071/FP10218 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elucidation of the sperm-egg interaction at the molecular level is one of the unresolved problems in sexual reproduction, and understanding the molecular mechanism is crucial in solving problems in infertility and failed in vitro fertilization (IVF). Many molecular interactions in the form of protein-protein interactions (PPIs) mediate the sperm-egg membrane interaction. Due to the complexity of the problem such as difficulties in analyzing in vivo membrane PPIs, many efforts have failed to comprehensively elucidate the fusion mechanism and the molecular interactions that mediate sperm-egg membrane fusion. The main purpose of this study was to reveal possible protein interactions and associated molecular function during sperm-egg interaction using a protein interaction network approach. Different databases have been used to construct the human sperm-egg interaction network. The constructed network revealed new interactions. These included CD151 and CD9 in human oocyte that interact with CD49 in sperm, and CD49 and ITGA4 in sperm that interact with CD63 and CD81, respectively, in the oocyte. These results showed that the different integrins in sperm may be involved in human sperm-egg interaction. It was also suggested that sperm ADAM2 plays a role as a protein candidate involved in sperm-egg membrane interaction by interacting with CD9 in the oocyte. Interleukin-4 receptor activity, receptor signaling protein tyrosine kinase activity, and manganese ion transmembrane transport activity are the major molecular functions in sperm-egg interaction protein network. The disease association analysis indicated that sperm-egg interaction defects are also reflected in other disease networks such as cardiovascular, hematological, and breast cancer diseases. By analyzing the network, we identified the major molecular functions and disease association genes in sperm-egg interaction protein. Further experimental studies will be required to confirm the significance of these new computationally resolved interactions and the genetic links between sperm-egg interaction abnormalities and the associated disease.
    Systems Biology in Reproductive Medicine 09/2014; 60(6). DOI:10.3109/19396368.2014.955896 · 1.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All modern rosids originated from a common hexapolyploid ancestor, and the genomes of some rosids have undergone one or more cycles of paleopolyploidy. After the duplication of the ancient genome, wholesale gene loss and gene subfunctionalization has occurred. Using the extensin super-gene family as an example, we tracked the differential retention and expansion of ancestral extensin genes in four modern rosids, Arabidopsis, Populus, Vitis and Carica, using several analytical methods.
    BMC Genomics 07/2014; 15(1):612. DOI:10.1186/1471-2164-15-612 · 4.04 Impact Factor