Article

Use of the diffusive gradients in thin films technique to evaluate (bio)available trace metal concentrations in river water.

Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 61200, Brno, Czech Republic.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.66). 04/2007; 387(6):2239-44. DOI: 10.1007/s00216-006-0996-y
Source: PubMed

ABSTRACT Concentrations of Cd, Cu, Cr, Pb, Ni and Zn were monitored in the Svitava River (the Czech Republic) during April and September 2005. Total concentrations and total dissolved concentrations were obtained through regular water sampling, and the diffusive gradients in thin films technique (DGT) were used to gain information on the kinetically labile metal concentrations. Each measured concentration was compared with the corresponding average (bio)available concentration calculated from the mass of metal accumulated by the moss species Fontinalis antipyretica. The concentrations of Cd, Pb, Cr and Zn measured using DGT corresponded well with those obtained after the deployment of Fontinalis antipyretica moss bags in the Svitava River, but the concentrations of Cu and Ni did not. The calculated (bio)available Cu concentration correlated well with the total dissolved concentration of Cu, whereas no correlation was found to exist between the concentrations of Ni.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we propose a novel micro-/nanofluidic device that can generate a chemical concentration gradient using a parallel nanochannel as gradient generator. This device is easy to fabricate, showing high reproducibility. Its main feature is the multiple-nanochannel-based gradient generator, which permits the diffusion of small molecules and tunably generates concentration gradients. The nanopattern for the nanochannels can be rapidly and easily fabricated by wrinkling a diamond-like carbon thin film which is deposited on a polydimethylsiloxane substrate; the generation of the concentration gradient can be adjusted by controlling the dimensions of the nanochannels. The developed gradient generator is embedded into a microfluidic device to study chemotaxis in the nematode Caenorhabditis elegans, which has a highly developed chemosensory system and can detect a wide variety of chemical molecules. This device shows good performance for rapid analysis of C. elegans chemotaxis under sodium chloride stimuli.
    Analytical and Bioanalytical Chemistry 02/2014; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy.
    Water Research 06/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present report is the companion study of our previous study in which we investigated the impact of the dissolved organic matter, water cationic composition and pH on the bioavailability and the bioaccumulation of copper (Cu) in aquatic mosses (Fontinalis antipyretica). The impact had been assessed under laboratory controlled conditions and modelled using a two-compartment model calibrated under a wide range of water compositions (Ferreira et al., 2008, 2009). Herein are reported the validation stage of the abovementioned approach for contrasted geochemical field conditions. Experiments were performed with aquatic mosses that were exposed for 7d to two nominal Cu concentrations (5 and 15μgL(-1)) in a flow-through field microcosm supplied with four contrasting natural waters. At the end of the exposure period, a 6-fold difference in the bioaccumulated Cu contamination levels was found among the four deployment sites, suggesting a significant control of the water quality on the metal bioaccumulation by aquatic mosses. In parallel, the so-called 'labile' Cu concentration for the same four field conditions was determined using a DGT device (Diffusive Gradient in Thin film). By coupling these DGT measurements and a cation competition model involving Ca(2+), Mg(2+), Na(+) and H(+), the time-dependent Cu concentrations in aquatic mosses were predicted; these simulation results were compared to the actual bioaccumulation of Cu in mosses. We found that any bioaccumulation model that ignores water characteristics is not suitable to predict the Cu accumulation by aquatic mosses under various water quality conditions. Instead, we found that our approach integrating DGT measurements and cationic composition was able to reproduce the Cu bioaccumulation kinetics by aquatic mosses for a wide range of water quality conditions. In conclusion, the DGT approach was demonstrated to be a dynamic in situ measuring technique that can be used as a surrogate of bioindicators if the cationic correction is taken into account.
    Chemosphere 01/2013; · 3.14 Impact Factor

Full-text (3 Sources)

View
9 Downloads
Available from
May 16, 2014