Article

Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120.

Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 30809-0345, USA.
Brain Behavior and Immunity (Impact Factor: 6.13). 08/2007; 21(5):660-7. DOI: 10.1016/j.bbi.2006.10.010
Source: PubMed

ABSTRACT Spinal cord glia (microglia and astrocytes) contribute to enhanced pain states. One model that has been used to study this phenomenon is intrathecal (i.t.) administration of gp120, an envelope glycoprotein of HIV-1 known to activate spinal cord glia and thereby induce low-threshold mechanical allodynia, a pain symptom where normally innocuous (non-painful) stimuli are perceived as painful. Previous studies have shown that i.t. gp120-induced allodynia is mediated via the release of the glial pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF), and interleukin-1beta (IL-1). As we have recently reported that i.t. gp120 induces the release of interleukin-6 (IL-6), in addition to IL-1 and TNF, the present study tested whether this IL-6 release in spinal cord contributes to gp120-induced mechanical allodynia and/or to gp120-induced increases in TNF and IL-1. An i.t. anti-rat IL-6 neutralizing antibody was used to block IL-6 actions upon its release by i.t. gp120. This IL-6 blockade abolished gp120-induced mechanical allodynia. While the literature predominantly documents the cascade of pro-inflammatory cytokines as beginning with TNF, followed by the stimulation of IL-1, and finally TNF plus IL-1 stimulating the release of IL-6, the present findings indicate that a blockade of IL-6 inhibits the gp120-induced elevations of TNF, IL-1, and IL-6 mRNA in dorsal spinal cord, elevation of IL-1 protein in lumbar dorsal spinal cord, and TNF and IL-1 protein release into the surrounding lumbosacral cerebrospinal fluid. These results would suggest that IL-6 induces pain facilitation, and may do so in part by stimulating the production and release of other pro-inflammatory cytokines.

Download full-text

Full-text

Available from: Matthew G Frank, Dec 18, 2013
0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pain is a serious problem for infants and children and treatment options are limited. Moreover, infants born prematurely or hospitalized for illness likely have concurrent infection that activates the immune system. It is now recognized that the immune system in general and glia in particular influence neurotransmission and that the neural bases of pain are intimately connected to immune function. We know that injuries that induce pain activate immune function and suppressing the immune system alleviates pain. Despite this advance in our understanding, virtually nothing is known of the role that the immune system plays in pain processing in infants and children, even though pain is a serious clinical issue in pediatric medicine. This brief review summarizes the existing data on immune-neural interactions in infants, providing evidence for the immaturity of these interactions. © 2014 Wiley Periodicals, Inc. Dev Psychobiol.
    Developmental Psychobiology 12/2014; 56(8). DOI:10.1002/dev.21229 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic systemic immune activation and inflammatory processes have been linked to brain dysfunction in medically stable HIV-infected people. We investigated the association between verbal memory performance and plasma concentrations of 13 cytokines measured using multiplexed bead array immunoassay in 74 HIV-seropositive individuals and 50 HIV-seronegative controls. Memory performance was positively related to levels of IL-8 and IFN-γ, and negatively related to IL-10 and IL-18 and to hepatitis C infection. Memory performance was not significantly related to HIV disease markers. The results indicate the importance of systemic immune and inflammatory markers to neurocognitive function in chronic and stable HIV disease.
    Journal of neuroimmunology 09/2013; DOI:10.1016/j.jneuroim.2013.09.005 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
    European journal of pharmacology 03/2013; 716(1-3). DOI:10.1016/j.ejphar.2013.01.072 · 2.68 Impact Factor