Article

Hypoxia-inducible factors: central regulators of the tumor phenotype.

Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, PA, USA.
Current Opinion in Genetics & Development (Impact Factor: 8.57). 03/2007; 17(1):71-7. DOI: 10.1016/j.gde.2006.12.006
Source: PubMed

ABSTRACT Low oxygen levels are a defining characteristic of solid tumors, and responses to hypoxia contribute substantially to the malignant phenotype. Hypoxia-induced gene transcription promotes characteristic tumor behaviors, including angiogenesis, invasion, metastasis, de-differentiation and enhanced glycolytic metabolism. These effects are mediated, at least in part, by targets of the hypoxia-inducible factors (HIFs). The HIFs function as heterodimers comprising an oxygen-labile alpha-subunit and a stable beta-subunit also referred to as ARNT. HIF-1alpha and HIF-2alpha stimulate the expression of overlapping as well as unique transcriptional targets, and their induction can have distinct biological effects. New targets and novel mechanisms of dysregulation place the HIFs in an ever more central role in tumor biology and have led to development of pharmacological inhibitors of their activity.

0 Bookmarks
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The energy production and metabolic homeostasis are well-orchestrated networks of carbohydrate, lipid and protein metabolism. These metabolic pathways are integrated by a key cytoplasmic organelle, the mitochondria, leading to production of many metabolic intermediates and harvest cellular energy in the form of ATP. Sirtuins are a highly conserved family of proteins that mediate cellular physiology and energy demands in response to metabolic inputs. Mitochondria inhabit three main types of sirtuins classified as Sirt3, Sirt4 and Sirt5. These sirtuins regulate mitochondrial metabolic functions mainly through controlling post-translational modifications of mitochondrial protein. However, the biological mechanism involved in controlling mitochondrial metabolic functions is not well understood at this stage. In this review the current knowledge on how mitochondrial sirtuins govern mitochondrial functions including energy production, metabolism, biogenesis and their involvement in different metabolic pathways are discussed. The identifications of potential pharmacological targets of sirtuins in the mitochondria and the bioactive compounds that target mitochondrial sirtuins will increase our understanding on regulation of mitochondrial metabolism in normal and disease state. Copyright © 2014. Published by Elsevier Inc.
    Experimental Gerontology 12/2014; 61. DOI:10.1016/j.exger.2014.12.004 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiology studies have established a strong link between lung cancer and arsenic exposure. Currently, the role of disturbed cellular energy metabolism in carcinogenesis is a focus of scientific interest. Hypoxia inducible factor-1 alpha (HIF-1A) is a key regulator of energy metabolism, and it has been found to accumulate during arsenite exposure under oxygen-replete conditions. We modeled arsenic-exposed human pulmonary epithelial cells in vitro with BEAS-2B, a non-malignant lung epithelial cell line. Constant exposure to 1 microM arsenite (As) resulted in the early loss of anchorage-dependent growth, measured by soft agar colony formation, beginning at 6 weeks of exposure. This arsenite exposure resulted in HIF-1A accumulation and increased glycolysis, similar to the physiologic response to hypoxia, but in this case under oxygen-replete conditions. This "pseudo-hypoxia" response was necessary for the maximal acquisition of anchorage-independent growth in arsenite-exposed BEAS-2B. The HIF-1A accumulation and induction in glycolysis was sustained throughout a 52 week course of arsenite exposure in BEAS-2B. There was a time-dependent increase in anchorage-independent growth during the exposure to arsenite. When HIF-1A expression was stably suppressed, arsenite-induced glycolysis was abrogated, and the anchorage-independent growth was reduced. These findings establish that arsenite exerts a hypoxia-mimetic effect, which plays an important role in the subsequent gain of malignancy-associated phenotypes.
    PLoS ONE 12/2014; 9(12):e114549. DOI:10.1371/journal.pone.0114549 · 3.53 Impact Factor
  • International Journal of Clinical Medicine 01/2011; 02(02):110-128. DOI:10.4236/ijcm.2011.22022

Preview

Download
0 Downloads
Available from