Tumor-Targeted Enzyme/Prodrug Therapy Mediates Long-term Disease-Free Survival of Mice Bearing Disseminated Neuroblastoma

St. Jude Children's Research Hospital, Memphis, Tennessee, United States
Cancer Research (Impact Factor: 9.33). 02/2007; 67(1):22-5. DOI: 10.1158/0008-5472.CAN-06-3607
Source: PubMed


Neural stem cells and progenitor cells migrate selectively to tumor loci in vivo. We exploited the tumor-tropic properties of HB1.F3.C1 cells, an immortalized cell line derived from human fetal telencephalon, to deliver the cDNA encoding a secreted form of rabbit carboxylesterase (rCE) to disseminated neuroblastoma tumors in mice. This enzyme activates the prodrug CPT-11 more efficiently than do human enzymes. Mice bearing multiple tumors were treated with rCE-expressing HB1.F3.C1 cells and schedules of administration of CPT-11 that produced levels of active drug (SN-38) tolerated by patients. Both HB1.F3.C1 cells and CPT-11 were given i.v. None of the untreated mice and 30% of mice that received only CPT-11 survived long term. In contrast, 90% of mice treated with rCE-expressing HB1.F3.C1 cells and 15 mg/kg CPT-11 survived for 1 year without detectable tumors. Plasma carboxylesterase activity and SN-38 levels in mice receiving both rCE-expressing HB1.F3.C1 cells (HB1.F3.C1/AdCMVrCE) and CPT-11 were comparable with those in mice receiving CPT-11 only. These data support the hypothesis that the antitumor effect of the described neural stem/progenitor cell-directed enzyme prodrug therapy (NDEPT) is mediated by production of high concentrations of active drug selectively at tumor sites, thereby maximizing the antitumor effect of CPT-11. NDEPT approaches merit further investigation as effective, targeted therapy for metastatic tumors. We propose that the described approach may have greatest use for eradicating minimum residual disease.

Download full-text


Available from: Philip M Potter,
  • Source
    • "indicates that MSCs are prominent for drug delivery in cancers, including ovarian, prostate, head and neck as well as hematological malignancies. MSCs can be expressed to deliver cytokines, prodrugs, apoptosis inducing proteins, and anti-angiogenic agents [85-92]. These findings have to be considered with the caveat that MSCs are also capable of exerting pro-tumorigenic effects and that MSCs should be reliably tracked once administered [38]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood brain barrier (BBB) poses a problem to deliver drugs for brain malignancies and neurodegenerative disorders. Stem cells such as neural stem cells (NSCs) and mesenchymal stem cells (MSCs) can be used to delivery drugs or RNA to the brain. This use of methods to bypass the hurdles of delivering drugs across the BBB is particularly important for diseases with poor prognosis such as glioblastoma multiforme (GBM). Stem cell treatment to deliver drugs to neural tumors is currently in clinical trial. This method, albeit in the early phase, could be an advantage because stem cells can cross the BBB into the brain. MSCs are particularly interesting because to date, the experimental and clinical evidence showed 'no alarm signal' with regards to safety. Additionally, MSCs do not form tumors as other more primitive stem cells such as embryonic stem cells. More importantly, MSCs showed pathotropism by migrating to sites of tissue insult. Due to the ability of MSCs to be transplanted across allogeneic barrier, drug-engineered MSCs can be available as off-the-shelf cells for rapid transplantation. This review discusses the advantages and disadvantages of stem cells to deliver prodrugs, genes and RNA to treat neural disorders.
    Clinical and Translational Medicine 07/2014; 3:24. DOI:10.1186/2001-1326-3-24
  • Source
    • "NSCs can be harvested from fetal, neonatal, or postnatal issues [12]. Since it is not feasible to obtain and isolate NSCs in sufficient numbers, immortalized neural progenitor cell lines instead of NSCs were prepared and used in several preclinical studies of prodrug cancer gene therapy [11, 13–15]. The well-characterized NSC line is HB1.F3, which was derived from fetal brain at 15 weeks of gestation and is known to be multipotent, migratory, and nontumorigenic. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.
    BioMed Research International 07/2014; 2014(4):549136. DOI:10.1155/2014/549136 · 1.58 Impact Factor
  • Source
    • "/ Rabbit carboxylesterase (rCE) and irinotecan-7-ethyl-10-[4- (1-piperidino)-1-piperidino]carbonyoxycamptothecin (CPT- 11) Rabbit CE (rCE) converts, more efficiently than human CE [12] [13], the prodrug CPT-11 into the cytotoxic drug SN38 (7-ethyl- 10-hydroxycamptothecin), which acts as a potent topoisomerase I inhibitor [63]. Choi et al. used genetically modified hASCs, which express rCE, along with a systemic administration of CPT-11 to treat brainstem glioma-bearing rats. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene-directed enzyme prodrug therapy (GDEPT) consists of targeted delivery to tumor cells of a suicide gene responsible for the in situ conversion of a prodrug into cytotoxic metabolites. One of the major impediments of GDEPT is to target specifically the tumor cells with the suicide gene. Among gene delivery methods, mesenchymal stem cells (MSCs) have emerged recently as potential cellular vehicles for gene delivery. MSCs are particularly suited for gene transduction. They exhibit remarkable migratory property towards tumors and their metastases and they are weakly immunogenic. This review will summarize the current knowledge about MSCs engineered to express different suicide genes (cytosine deaminase, thymidine kinase, carboxylesterase, cytochrome P450) to elicit a significant antitumor response against brain tumors, ovarian, hepatocellular, pancreatic, renal or medullary thyroid carcinomas, breast or prostate cancer and pulmonary metastases. The potential side effects of these MSC-based tumor therapies will also be considered to highlight certain aspects that need to be improved prior to clinical use.
    Biochimie 06/2014; 105C. DOI:10.1016/j.biochi.2014.06.016 · 2.96 Impact Factor
Show more