Combining an mTOR antagonist and receptor tyrosine kinase inhibitors for the treatment of prostate cancer.

Cancer Biology Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, 300 Brookline Avenue, Boston, MA 02215, USA.
Cancer biology & therapy (Impact Factor: 3.63). 03/2007; 6(2):195-201. DOI: 10.4161/cbt.6.2.3588
Source: PubMed

ABSTRACT Inhibition of the mammalian target of rapamycin (mTOR) signaling pathway is a potentially useful therapeutic strategy in the treatment of advanced prostate cancer. However mTOR antagonists used as single agents are not likely to result in dramatic clinical responses, so that it is useful to identify prospective agents that might be useful in combination. We treated CWR22Rv1 and LNCaP prostate cancer cells with an mTOR inhibitor, rapamycin, alone, or in combination with either of two receptor protein kinase (RTK) inhibitors. We assessed the effects of these treatments on cell survival and activation of down-stream mTOR target proteins. Treatment with either PD16839, an EGFr antagonist, or imatinib mesylate (Gleevec), a PDGFr, c-kit and bcr/abl antagonist, enhanced the anti-proliferative effects of rapamycin. We therefore assessed the effects of treatment with the RTK antagonist alone and in combination with rapamycin on mTOR targeted proteins. RTK antagonists alone had no effect or paradoxically increased phosphorylation of the mTOR targeted proteins, p70 S6 kinase and ribosomal S6. In contrast, when these cells were treated with either RTK antagonist in the presence of rapamycin, there was a dramatic decrease in phosphorylation of these two mTOR-targeted proteins. These effects were not mediated through phospho-AKT. Since two separate RTK antagonists had additive antiproliferative effects in combination with an mTOR antagonist and were associated with a dramatic decrease in mTOR targeted proteins in cells with or without PTEN expression, the strategy deserves further evaluation for the treatment of prostate cancer.

  • [Show abstract] [Hide abstract]
    ABSTRACT: AKT1, a serine/threonine-protein kinase also known as AKT kinase, is involved in the regulation of various signalling downstream pathways including metabolism, cell proliferation, survival, growth, and angiogenesis. The AKT kinases pathway stands among the most important components of cell proliferation mechanism. Several approaches have been implemented to design an efficient drug molecule to target AKT kinases, although the promising results have not been confirmed. In this paper we have documented the detailed molecular insight of AKT kinase protein and proposed a probable doxorubicin based approach in inhibiting miR-21 based cancer cell proliferation. Moreover, the inhibition of miR-21 activation by raising the FOXO3A concentration seems promising in reducing miR-21 mediated cancer activation in cell. Furthermore, the use of next generation sequencing and computational drug design approaches will greatly assist in designing a potent drug molecule against the associated cancer cases.
    The Scientific World Journal 11/2013; 2013:756134. DOI:10.1155/2013/756134 · 1.22 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.
    Cancer biology & therapy 11/2013; 14(12). DOI:10.4161/cbt.27350 · 3.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to investigate the antiproliferative effects of interferon (IFN)-α and rapamycin (RPM) on renal cell carcinoma (RCC) cells and examine the synergistic growth suppression conferred by IFN-α and RPM. The effects of IFN-α and/or RPM on RCC cells were determined using a WST-1 assay and the synergy of IFN-α and RPM against three RCC cell lines was analyzed with isobolographic analysis. The expression of mammalian target of rapamycin (mTOR) was downregulated by RNAi, and the expression and phosphorylation of proteins in the mTOR pathway following treatment with IFN-α and/or RPM was examined by western blot analysis. The observations indicated that IFN-α significantly increased the susceptibility of RCC cells to RPM and the synergistic effect of IFN-α and RPM against RCC cells was confirmed in all three RCC cell lines. The mTOR pathway was shown to be associated with the synergistic effect of IFN-α and RPM against RCC. IFN-α and RPM alone decreased the phosphorylation of mTOR, p70 S6 kinase, S6 and 4E binding protein 1, and IFN-α significantly enhanced the RPM-induced suppression of the mTOR pathway. However, in RCC cells with low mTOR activity, the synergy of IFN-α and RPM was eliminated. Therefore, the results of the present study indicate that the mTOR pathway plays an important role in the synergistic effect of IFN-α and RPM against RCC cells. Thus, mTOR may serve as an effective therapeutic target in the treatment of advanced RCC.
    Experimental and therapeutic medicine 07/2014; 8(1):267-273. DOI:10.3892/etm.2014.1691 · 0.94 Impact Factor
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Available from
Dec 1, 2014