Article

Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
Folia Histochemica et Cytobiologica (Impact Factor: 1.1). 02/2006; 44(4):231-48.
Source: PubMed

ABSTRACT The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R) is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type), 4.1B (brain type), and 4.1N (neuron type), and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH) proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK), non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.

0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Integrins link the extracellular matrix (ECM) to the cytoskeleton to control cell behaviors including adhesion, spreading and migration. Band 4.1 proteins contain 4.1, ezrin, radixin, moesin (FERM) domains that likely mediate signaling events and cytoskeletal reorganization via integrins. However, the mechanisms by which Band 4.1 proteins and integrins are functionally interconnected remain enigmatic. Here we have investigated roles for Band 4.1 proteins in integrin-mediated cell spreading using primary astrocytes as a model system. We demonstrate that Proteins 4.1B and 4.1G show dynamic patterns of sub-cellular localization in astrocytes spreading on fibronectin. During early stages of cell spreading Proteins 4.1B and 4.1G are enriched in ECM adhesion sites but become more diffusely localized at later stages of spreading. Combinatorial inactivation of Protein 4.1B and 4.1G expression leads to impaired astrocyte spreading. Furthermore, in exogenous expression systems we show that the isolated Protein 4.1 FERM domain significantly enhances integrin-mediated cell spreading. Protein 4.1B is dispensable for reactive astrogliosis in experimental models of cortical injury, likely due to functional compensation by related Protein 4.1 family members. Collectively, these findings reveal that Band 4.1 proteins are important intracellular components for integrin-mediated cell spreading.
    Biochemical and Biophysical Research Communications 09/2012; 426(4):578-84. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies highlight the importance of the distribution of membrane receptors in controlling receptor output and in contributing to complex biological processes. The cortical cytoskeleton is known to affect membrane protein distribution but the molecular basis of this is largely unknown. Here, we discuss the functions of Merlin and the ERM proteins both in linking membrane proteins to the underlying cortical cytoskeleton and in controlling the distribution of and signaling from membrane receptors. We also propose a model that could account for the intricacies of Merlin function across model organisms.
    Trends in cell biology 05/2009; 19(5):198-206. · 12.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Plasmodium falciparum parasites export more than 400 proteins into the cytosol of their host erythrocytes. These exported proteins catalyse the formation of knobs on the erythrocyte plasma membrane and an overall increase in erythrocyte rigidity, presumably by modulating the endogenous erythrocyte cytoskeleton. In uninfected erythrocytes, Band 4.1 (4.1R) plays a key role in regulating erythrocyte shape by interacting with multiple proteins through the three lobes of its cloverleaf-shaped N-terminal domain. In P. falciparum-infected erythrocytes, the C-lobe of 4.1R interacts with the P. falciparum protein mature parasite-infected erythrocyte surface antigen (MESA), but it is not currently known whether other P. falciparum proteins bind to other lobes of the 4.1R N-terminal domain. METHODS: In order to identify novel 4.1R interacting proteins, a yeast two-hybrid screen was performed with a fragment of 4.1R containing both the N- and alpha-lobes. Positive interactions were confirmed and investigated using site-directed mutagenesis, and antibodies were raised against the interacting partner to characterise it's expression and distribution in P. falciparum infected erythrocytes. RESULTS: Yeast two-hybrid screening identified a positive interaction between the 4.1R N- and alpha-lobes and PF3D7_0402000. PF3D7_0402000 is a member of a large family of exported proteins that share a domain of unknown function, the PHIST domain. Domain mapping and site-directed mutagenesis established that it is the PHIST domain of PF3D7_0402000 that interacts with 4.1R. Native PF3D7_0402000 is localized at the parasitophorous vacuole membrane (PVM), and colocalizes with a subpopulation of 4.1R. DISCUSSION: The function of the majority of P. falciparum exported proteins, including most members of the PHIST family, is unknown, and in only a handful of cases has a direct interaction between P. falciparum-exported proteins and components of the erythrocyte cytoskeleton been established. The interaction between 4.1R and PF3D7_0402000, and localization of PF3D7_0402000 with a sub-population of 4.1R at the PVM could indicate a role in modulating PVM structure. Further investigation into the mechanisms for 4.1R recruitment is needed. CONCLUSION: PF3D7_0402000 was identified as a new binding partner for the major erythrocyte cytoskeletal protein, 4.1R. This interaction is consistent with a growing body of literature that suggests the PHIST family members function by interacting directly with erythrocyte proteins.
    Malaria Journal 05/2013; 12(1):160. · 3.49 Impact Factor

Full-text (2 Sources)

View
57 Downloads
Available from
May 17, 2014