Article

Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity.

Howard Hughes Medical Institute, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
Nature (Impact Factor: 42.35). 02/2007; 445(7126):394-8. DOI: 10.1038/nature05490
Source: PubMed

ABSTRACT Ubiquitin-like proteins (UBLs) are conjugated by dynamic E1-E2-E3 enzyme cascades. E1 enzymes activate UBLs by catalysing UBL carboxy-terminal adenylation, forming a covalent E1 throught UBL thioester intermediate, and generating a thioester-linked E2 throught UBL product, which must be released for subsequent reactions. Here we report the structural analysis of a trapped UBL activation complex for the human NEDD8 pathway, containing NEDD8's heterodimeric E1 (APPBP1-UBA3), two NEDD8s (one thioester-linked to E1, one noncovalently associated for adenylation), a catalytically inactive E2 (Ubc12), and MgATP. The results suggest that a thioester switch toggles E1-E2 affinities. Two E2 binding sites depend on NEDD8 being thioester-linked to E1. One is unmasked by a striking E1 conformational change. The other comes directly from the thioester-bound NEDD8. After NEDD8 transfer to E2, reversion to an alternate E1 conformation would facilitate release of the E2 throught NEDD8 thioester product. Thus, transferring the UBL's thioester linkage between successive conjugation enzymes can induce conformational changes and alter interaction networks to drive consecutive steps in UBL cascades.

0 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Attachment of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins regulates numerous cellular processes including transcription, the cell cycle, stress responses, DNA repair, apoptosis, immune responses, and autophagy, to name a few. The mechanistically parallel but functionally distinct conjugation pathways typically require the concerted activities of three types of protein: E1 Ubl-activating enzymes, E2 Ubl carrier proteins, and E3 Ubl ligases. E1 enzymes initiate pathway specificity for each cascade by recognizing and activating cognate Ubls, followed by catalyzing Ubl transfer to cognate E2 protein(s). Under certain circumstances, the E2 Ubl complex can direct ligation to the target protein, but most often requires the cooperative activity of E3 ligases. Reviewed here are recent structural and functional studies that improve our mechanistic understanding of E1-, E2-, and E3-mediated Ubl conjugation. Expected final online publication date for the Annual Review of Biophysics Volume 43 is May 06, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Biophysics 04/2014; · 12.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitination levels of protein substrates in eukaryotic cells are delicately orchestrated by various protein cofactors and enzymes. Dendritic cell-derived ubiquitin (Ub)-like protein (DC-UbP), also named as Ub domain-containing protein 2 (UBTD2), is a potential Ub shuttle protein comprised of a Ub-like (UbL) domain and a Ub-binding domain (UBD), but its biological function remains largely unknown. We identified two Ub-related enzymes, the deubiquitinating enzyme USP5 and the Ub-activating enzyme UbE1, as interacting partners of DC-UbP from HEK 293T cells. Biochemical studies revealed that the tandem UBA domains of USP5 and the C-terminal Ub-fold domain (UFD) of UbE1 directly interacted with the C-terminal UbL domain of DC-UbP but on the distinct surfaces. Overexpression of DC-UbP in HEK 293T cells enhanced the association of these two enzymes and thus prompted cellular ubiquitination, whereas knockdown of the protein reduced the cellular ubiquitination level. Together, DC-UbP may integrate the functions of USP5 and UbE1 through interacting with them, and thus reconcile the cellular ubiquitination and deubiquitination processes.
    PLoS ONE 09/2014; 9(9):e107509. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.
    PLoS ONE 11/2014; 9(11):e112082. · 3.53 Impact Factor

Preview

Download
0 Downloads
Available from