Article

Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin.

Center for Oral Health and Systemic Disease and Department of Periodontics, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2007; 282(10):7532-42. DOI: 10.1074/jbc.M611722200
Source: PubMed

ABSTRACT Innate recognition and signaling by Toll-like receptors (TLRs) is facilitated by functionally associated coreceptors, although the cooperativity mechanisms involved are poorly understood. As a model we investigated TLR2 interactions with the GD1a ganglioside binding subunit of type IIb Escherichia coli enterotoxin (LT-IIb-B(5)). Both LT-IIb-B(5) and a GD1a binding-defective mutant (LT-IIb-B(5)(T13I)) could modestly bind to TLR2, but only the wild-type molecule displayed a dramatic increase in TLR2 binding activity in the presence of GD1a (although not in the presence of irrelevant gangliosides). Moreover, fluorescence resonance energy transfer experiments indicated that LT-IIb-B(5) induces lipid raft recruitment of TLR2 and TLR1 and their clustering with GD1a, in contrast to the GD1a binding-defective mutant, which moreover fails to activate TLR2 signaling. LT-IIb-B(5)-induced cell activation was critically dependent upon the Toll/IL-1 receptor domain-containing adaptor protein, which was induced to colocalize with TLR2 and GD1a, as shown by confocal imaging. Therefore, GD1a provides TLR2 coreceptor function by enabling the ligand to recruit, bind, and activate TLR2. These findings establish a model of TLR2 coreceptor function and, moreover, suggest novel mechanisms of adjuvanticity by non-toxic derivatives of type II enterotoxins dependent upon GD1a/TLR2 cooperative activity.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-κB activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties.
    PLoS ONE 06/2014; 9(6):e98512. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B(5)) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B(5), but not the LT-IIb-B(5) Ser74Asp variant [LT-IIb-B(5)(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B(5)(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B(5) and the LT-IIb-B(5) Thr13Ile [LT-IIb-B(5)(T13I)] and LT-IIb-B(5) Ser74Ala [LT-IIb-B(5)(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B(5) have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B(5)(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B(5)(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B(5)(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with the lack of binding of the LT-IIb-B(5)(T13I) variant to GD1a ganglioside.
    Acta Crystallographica Section D Biological Crystallography 12/2012; 68(Pt 12):1604-1612. · 7.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli heat labile enterotoxin (LT) is regarded as a potent mucosal virulence factor. It shows an immune modulatory activity to increase immune responses to other antigens on mucosal surfaces. LT forms an AB5 toxin structure composed of one A subunit and a pentamer of five B subunits. Because the A subunit is responsible for the enzymatic activity and toxicity, the B subunits have been extensively studied for their exploitation as adjuvants. Having the ability to bind TLR as well as ganglioside receptors, the B subunits of LT shows adjuvanticity. In practice, they are under study concerning the immune modulatory effects for vaccines.
    Journal of the Korean Society for Applied Biological Chemistry 12/2009; 52(6):573-581. · 0.54 Impact Factor