Article

Sequential addition of H2O, CH3OH, and NH3 to Al3O3-: a theoretical study

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Ciudad Universitaria, P.O. Box 70-360, Coyoacán, 04510 Distrito Federal, México.
The Journal of Chemical Physics (Impact Factor: 3.12). 02/2007; 126(2):024309. DOI: 10.1063/1.2409293
Source: PubMed

ABSTRACT Photoelectron spectra of two species, Al3O3(H2O)2- and Al3O3(CH3OH)2-, that are produced by the addition of two water or methanol molecules to Al3O3- are interpreted with density-functional geometry optimizations and electron propagator calculations of vertical electron detachment energies. In both cases, there is only one isomer that is responsible for the observed spectral features. A high barrier to the addition of a second molecule may impede the formation of Al3O3N2H6- clusters in an analogous experiment with NH3.

1 Follower
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chemical reactions of water, methanol, and ammonia with Al5O4- have been studied using electronic structure calculations. The chemistry of Al5O4- with these molecules is different from that of Al3O3-. While Al3O3- dissociatively adsorbs two water molecules (and methanol), Al5O4- reacts with only one. In addition, Al5O4- does not show any reaction with ammonia while recent experimental and theoretical studies suggest that Al3O3- chemisorbs ammonia. These apparent differences in their chemical reactivity have been explained based on the thermodynamic stability of the corresponding reaction products and kinetic barriers associated with their formation.
    The Journal of Chemical Physics 11/2007; 127(15):154310. DOI:10.1063/1.2790012 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vanadium oxide clusters, (V2O5)n, have been predicted to possess interesting polyhedral cage structures, which may serve as ideal molecular models for oxide surfaces and catalysts. Here we examine the electronic properties of these oxide clusters via anion photoelectron spectroscopy for (V2O5)n(-) (n = 2-4), as well as for the 4d/5d species, Nb4O10(-) and Ta4O10(-). Well-resolved photoelectron spectra have been obtained at 193 and 157 nm and used to compare with density functional calculations. Very high electron affinities and large HOMO-LUMO gaps are observed for all the (V2O5)n clusters. The HOMO-LUMO gaps of (V2O5)n, all exceeding that of the band gap of the bulk oxide, are found to increase with cluster size from n = 2-4. For the M4O10 clusters, we find that the Nb/Ta species yield similar spectra, both possessing lower electron affinities and larger HOMO-LUMO gaps relative to V4O10. The structures of the anionic and neutral clusters are optimized; the calculated electron binding energies and excitation spectra for the global minimum cage structures are in good agreement with the experiment. Evidence is also observed for the predicted trend of electron delocalization versus localization in the (V2O5)n(-) clusters. Further insights are provided pertaining to the potential chemical reactivities of the oxide clusters and properties of the bulk oxides.
    Journal of the American Chemical Society 11/2007; 129(43):13270-6. DOI:10.1021/ja0750874 · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photoelectron spectra of Al(5)O(m)(-) (m=3-5) and of the anion produced by the dissociative adsorption of a water molecule by Al(5)O(4)(-) are interpreted with density-functional geometry optimizations and electron-propagator calculations of vertical electron detachment energies. For Al(5)O(3)(-), Al(5)O(4)(-), and Al(5)O(5)H(2)(-), the observed signals may be attributed to the most stable isomer of each anion. For Al(5)O(5)(-), the features in the photoelectron spectrum are due to three almost isoenergetic isomers.
    The Journal of Chemical Physics 01/2008; 127(23):234302. DOI:10.1063/1.2806845 · 3.12 Impact Factor
Show more