Ability of hyaluronidase 2 to degrade extracellular hyaluronan is not required for its function as a receptor for jaagsiekte sheep retrovirus.

Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109-1024, USA.
Journal of Virology (Impact Factor: 4.65). 05/2007; 81(7):3124-9. DOI: 10.1128/JVI.02177-06
Source: PubMed

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) uses hyaluronidase 2 (Hyal2) as a cell entry receptor. By making inactivating mutations to the catalytic residues of human Hyal2, we found that hyaluronidase activity was dispensable for its receptor function. The affinities of the JSRV envelope glycoprotein for Hyal2 and the Hyal2 mutant were similar, and hyaluronan did not block either high-affinity interaction or virus infection. While generating the Hyal2 mutant, we discovered that our previous analysis of the hyaluronidase activity of Hyal2 was affected by a contaminating hyaluronan lyase, which we have identified as the occlusion-derived baculovirus E66 protein of the recombinant baculovirus used to produce Hyal2. We now report that purified human Hyal2 is a weak acid-active hyaluronidase.


Available from: Vladimir Vigdorovich, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large DNA viruses normally have complex structures with many of protein components derived from both viral and host origins. The development in proteomics, especially mass spectrometry identification techniques provide powerful tools for analyzing large viruses. In this review, we have summarized the recent achievements on proteomic studies of large DNA viruses, such as herpesvirus, poxvirus, nimavirus and baculoviruse. The proteomics of baculovirus occlusion-derived virions (ODV) were emphasized. Different mass spectrometry techniques used on various baculoviruses were introduced, and the identified structurally associated proteins of baculoviruses are summarized.
    Virologica Sinica 08/2009; 24(4):268-284. DOI:10.1007/s12250-009-3062-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the more unusual groups of insect pathogens consists of members of the family Polydnaviridae, insect DNA viruses that live in mutual symbioses with their associated parasitoid wasp (Hymentoptera) carriers until they are injected into specific lepidopteran hosts. Once inside this secondary host, polydnaviruses cause a wide variety of negative effects that ultimately ensure the survival of the parasitoid larvae. Because of their unusual life strategy and genetic features, it had been difficult to fully characterise polydnaviruses in terms of evolutionary history, replication cycle and functions in the host that might normally be well characterised for more conventional viruses. Recently, our understanding of polydnavirus evolutionary origins, gene content, genome organisation and functions in parasitism has greatly increased. Key findings are summarised in this review with emphasis on evolution of polydnavirus genes and genomes, their functional roles in insect pathology and their potential applications in insect biological control and biotechnology.
    Biocontrol Science and Technology 01/2013; 23(1). DOI:10.1080/09583157.2012.731497 · 0.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alphabaculoviruses of the family Baculoviridae infect the larvae of the Lepidoptera (moths and butterflies) when the occlusion-derived virus (ODV) released from the occlusion body (OB) binds and fuses to the midgut epithelium. Most alphabaculoviruses readily infect only a few species of caterpillars. The ODV contain more than 30 proteins, twelve of which are conserved across the alphabaculoviruses, including the envelope proteins ODV-E56 and ODV-E66. The mechanism of viral fusion and entry, as well as, the ODV envelope proteins implicated in this process, are unknown. A family of ODV envelope per os infectivity factors (PIFs) has been identified, which includes seven proteins that have significant effects on oral infectivity. Here, we assess the potential roles of ODV-E56 and ODV-E66 in oral infectivity. Bioassays showed that ODV-E56-negative virus was significantly less infectious per os, in both ODV and OB. However, the ODV-E56 negative purified ODV exhibited a two-log reduction in oral infectivity compared to ODV-E56 positive virus, whereas the ODV-E56 negative OBs exhibited a five-log reduction in infectivity. This suggests ODV-E56 may function in early interactions within the gut. The ODV-E56 negative viruses exhibited wild-type levels of binding and fusion, but viral DNA was not transcribed. ODV-E56 bound to 97 kDA protein from Heliothis virescens midguts. Thus, ODV-E56 is not essential for cell fusion, but may function in cell signaling and post-fusion events. These results indicate that ODV-E56 is PIF-5. Fifteen H. virescens gut-binding peptides were isolated using a phage display library, and two peptides showed similarity to ODV-E66. One phage peptide, HV1, exhibited strong binding to cryosections of fourth instar H. virescens midguts, and in competition assays with baculovirus resulted in decreased mortality and increased survival time. The homolog AcE66A to the second phage peptide (HV2), exhibited strong binding, but had no effect on mortality in competition assays. ODV-E56 and ODV-E66 are conserved proteins that localize to a very complex virion envelope, and further studies are needed to detail their functions. Increased knowledge of the determinants of virus infection may facilitate further development of these viruses for use as environmentally benign insecticides, as well as, greater understanding of viral mechanisms.