Article

Electrical and pharmacological properties of petrosal ganglion neurons that innervate the carotid body.

Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, P Universidad Católica de Chile, Casilla 114-D, Santiago 1, Chile.
Respiratory Physiology & Neurobiology (Impact Factor: 1.97). 08/2007; 157(1):130-9. DOI: 10.1016/j.resp.2006.12.006
Source: PubMed

ABSTRACT The petrosal ganglion (PG) contains the somata of primary afferent neurons that innervate the chemoreceptor (glomus) cells in the carotid body (CB). The most accepted model of CB chemoreception states that natural stimuli trigger the release of one or more transmitters from glomus cells, which in turn acting on specific post-synaptic receptors increases the rate of discharge in the nerve endings of PG neurons. However, PG neurons that project to the CB represent only small fraction (roughly 20%) of the whole PG and their identification is not simple since their electrophysiological and pharmacological properties are not strikingly different as compared with other PG neurons, which project to the carotid sinus or the tongue. In addition, differences reported on the actions of putative transmitters on PG neurons may reflect true species differences. Nevertheless, some experimental strategies have contributed to identify and characterize the properties of PG neurons that innervate the CB. In this review, we examined the electrophysiological properties and pharmacological responses of PG neurons to putative CB excitatory transmitters, focusing on the methods of study and species differences. The evidences suggest that ACh and ATP play a major role in the fast excitatory transmission between glomus cells and chemosensory nerve endings in the cat, rat and rabbit. However, the role of other putative transmitters such as dopamine, 5-HT and GABA is less clear and depends on the specie studied.

0 Bookmarks
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The petrosal ganglion is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties petrosal ganglion neurons can be ascribed to one of two categories: i) neurons with action potentials presenting an inflection (hump) on its repolarizing phase and ii) neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite) cells that prevents the formation of chemical or electrical synapses between neurons. Thus, petrosal ganglion neurons are regarded as mere wires that communicate the periphery (i.e., carotid body) and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of petrosal ganglion neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.
    Frontiers in Physiology 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation.
    Frontiers in Physiology 12/2014; 5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carotid body is a highly specialized chemoreceptive structure for the detection of and reaction to hypoxia, through induction of an increase in hypoxia inducible factor. As tissue hypoxia increases with aging and can have dramatic effects in respiratory depression induced by drug addiction, we investigated the carotid body in young and old healthy subjects in comparison with drug-addicted subjects, including the expression of the neurotransmitter galanin. Galanin expression was recently reported for neuronal-like cells of the human carotid body, and it is implicated in several functions in neurons. In particular, this includes the regulation of differentiation of neural stem cells, and participation in the development and plasticity of the nervous system. Using immunohistochemistry detection, we demonstrate that galanin expression in the human carotid body in healthy older subjects and drug-addicted subjects is significantly reduced in comparison with healthy young subjects. This demonstrates not only the effects of normal aging and senescence, but also in the drug-addicted subjects, this appears to be due to a disorganization of the chemo-sensory region. With both aging and drug addiction, this results in a physiological reduction in neuronal-like cells, coupled with interlobular and intralobular increases in connective tissue fibers. Consequently, in both aging and drug addiction, this reduction of neuronal-like cells and the regeneration suggest that the carotid body is losing its sensory capabilities, with the transmission of chemoreceptive signals dramatically and vitally reduced. The level of galanin expression would thus provide a signal for neurogenesis in young subjects, and for neurodegeneration in older and drug-addicted subjects.
    Frontiers in Physiology 10/2014; 5:427.

Full-text

Download
52 Downloads
Available from
May 20, 2014