EDGEdb: a transcription factor-DNA Interaction database for the analysis of C. elegans differential gene expression

Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA. <>
BMC Genomics (Impact Factor: 4.04). 02/2007; 8:21. DOI: 10.1186/1471-2164-8-21
Source: PubMed

ABSTRACT Transcription regulatory networks are composed of protein-DNA interactions between transcription factors and their target genes. A long-term goal in genome biology is to map protein-DNA interaction networks of all regulatory regions in a genome of interest. Both transcription factor -and gene-centered methods can be used to systematically identify such interactions. We use high-throughput yeast one-hybrid assays as a gene-centered method to identify protein-DNA interactions between regulatory sequences (e.g. gene promoters) and transcription factors in the nematode Caenorhabditis elegans. We have already mapped several hundred protein-DNA interactions and analyzed the transcriptional consequences of some by examining differential gene expression of targets in the presence or absence of an upstream regulator. The rapidly increasing amount of protein-DNA interaction data at a genome scale requires a database that facilitates efficient data storage, retrieval and integration.
Here, we report the implementation of a C. elegans differential gene expression database (EDGEdb). This database enables the storage and retrieval of protein-DNA interactions and other data that relate to differential gene expression. Specifically, EDGEdb contains: i) sequence information of regulatory elements, including gene promoters, ii) sequence information of all 934 predicted transcription factors, their DNA binding domains, and, where available, their dimerization partners and consensus DNA binding sites, iii) protein-DNA interactions between regulatory elements and transcription factors, and iv) expression patterns conferred by regulatory elements, and how such patterns are affected by interacting transcription factors.
EDGEdb provides a protein-DNA -and protein-protein interaction resource for C. elegans transcription factors and a framework for similar databases for other organisms. The database is available at

  • Engineering in Medicine and Biology Society, 1993. Proceedings of the 15th Annual International Conference of the IEEE; 01/1993
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ever-increasing capacity of biological molecular data acquisition outpaces our ability to understand the meaningful relationships between molecules in a cell. Multiple databases were developed to store and organize these molecular data. However, emerging fundamental questions about concerted functions of these molecules in hierarchical cellular networks are poorly addressed. Here we review recent advances in the development of publically available databases that help us analyze the signal integration and processing by multilayered networks that specify biological responses in model organisms and human cells.
    PLoS Computational Biology 02/2014; 10(2):e1003385. DOI:10.1371/journal.pcbi.1003385 · 4.83 Impact Factor
  • Source
    Soheil Feizi, Gerald Quon, Muriel Medard, Manolis Kellis, Ali Jadbabaie
    [Show abstract] [Hide abstract]
    ABSTRACT: Network alignment refers to the problem of finding a bijective mapping across vertices of two or more graphs to maximize the number of overlapping edges and/or to minimize the number of mismatched interactions across networks. This paper introduces a network alignment algorithm inspired by eigenvector analysis which creates a simple relaxation for the underlying quadratic assignment problem. Our method relaxes binary assignment constraints along the leading eigenvector of an alignment matrix which captures the structure of matched and mismatched interactions across networks. Our proposed algorithm denoted by EigeAlign has two steps. First, it computes the Perron-Frobenius eigenvector of the alignment matrix. Second, it uses this eigenvector in a linear optimization framework of maximum weight bipartite matching to infer bijective mappings across vertices of two graphs. Unlike existing network alignment methods, EigenAlign considers both matched and mismatched interactions in its optimization and therefore, it is effective in aligning networks even with low similarity. We show that, when certain technical conditions hold, the relaxation given by EigenAlign is asymptotically exact over Erdos-Renyi graphs with high probability. Moreover, for modular network structures, we show that EigenAlign can be used to split the large quadratic assignment optimization into small subproblems, enabling the use of computationally expensive, but tight semidefinite relaxations over each subproblem. Through simulations, we show the effectiveness of the EigenAlign algorithm in aligning various network structures including Erdos-Renyi, power law, and stochastic block models, under different noise models. Finally, we apply EigenAlign to compare gene regulatory networks across human, fly and worm species which we infer by integrating genome-wide functional and physical genomics datasets from ENCODE and modENCODE consortia. EigenAlign infers conserved regulatory interactions across these species despite large evolutionary distances spanned. We find strong conservation of centrally-connected genes and some biological pathways, especially for human-fly comparisons.

Full-text (3 Sources)

Available from
May 21, 2014