Article

A non-covalent peptide-based strategy for siRNA delivery

Centre de Recherches de Biochimie Macromoléculaire, CRBM-CNRS, Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, 34293 Montpellier, France.
Biochemical Society Transactions (Impact Factor: 3.24). 03/2007; 35(Pt 1):44-6. DOI: 10.1042/BST0350044
Source: PubMed

ABSTRACT The major obstacle to clinical development of siRNAs (short interfering RNAs), like for most of the nucleic-acid-based strategies, is their poor cellular uptake and bioavailability. Although several viral and non-viral strategies have been proposed to improve siRNA delivery, their applications in vivo remain a major challenge. We have developed a new strategy, based on a short amphipathic peptide, MPG, that is able to form stable nanoparticles with siRNA. MPG-based particles enter the cell independently of the endosomal pathway and can efficiently deliver siRNA in a fully biologically active form into a variety of cell lines and in vivo. This short review will discuss the mechanism and the potency of the MPG strategy for siRNA delivery both in vitro and in vivo.

Download full-text

Full-text

Available from: Laurence Crombez (Campion), Jul 04, 2015
0 Followers
 · 
197 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soon after discovery of RNA interference (RNAi), its potential as eff ective antiviral therapy was recognized. Since then RNAi has been variously exploited for antiviral purposes which could eff ectively block viral replication in vitro. For in vivo use, however, delivery issue, toxicity, RNAi suppression and viral escape are still major hurdles. Here, we provide an overview of the RNAi strategy and review the approaches that have been developed to surpass the obstacles and to achieve targeted gene silencing for antiviral and other therapies.
    01/2013; 18(1-2):1-23. DOI:10.17525/vrr.v18i1-2.92
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent discovery of new potent therapeutic molecules which do not reach the clinic due to poor delivery and low bioavailability have made the delivery of molecules a keystone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including CPPs (cell-penetrating peptides), which represent a new and innovative concept to bypass the problem of bioavailability of drugs. CPPs constitute very promising tools and have been successfully applied for in vivo. Two CPP strategies have been described to date; the first one requires chemical linkage between the drug and the carrier for cellular drug internalization, and the second is based on the formation of stable complexes with drugs, depending on their chemical nature. The Pep and MPG families are short amphipathic peptides, which form stable nanoparticles with proteins and nucleic acids respectively. MPG- and Pep-based nanoparticles enter cells independently of the endosomal pathway and efficiently deliver cargoes, in a fully biologically active form, into a large variety of cell lines, as well as in animal models. This review focuses on the structure-function relationship of non-covalent MPG and Pep-1 strategies, and their requirement for cellular uptake of biomolecules and applications in cultured cells and animal models.
    Biology of the Cell 05/2008; 100(4):201-17. DOI:10.1042/BC20070116 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the major challenges for new therapeutics molecules to enter the clinic remains improving their bioavailability and cellular uptake. Therefore, delivery has become a key stone in therapeutic development and several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs) or protein transduction domain (PTD). PTDs or CPPs were discovered twenty years ago, based on the potency of several proteins to enter cells and nowadays, numerous peptide carriers have been described and successfully applied for ex vivo and in vivo delivery of varying therapeutic molecules. Two CPP-strategies have been reported; the first one requires chemical linkage between the drug and the carrier for cellular drug internalization and the second is based on the formation of stable complexes with drugs depending on their chemical nature. Peptide-Based-Nanoparticle Devices (PBND), correspond to short amphipathic peptides able to form stable nanoparticles with proteins and/or nucleic acids. Three PBND-families, PEP, MPG and CADY have been described, these carriers mainly enter cells independently of the endosomal pathway and efficiently deliver cargoes in a large variety of challenging cell lines as well as in animal models. This review will focus on the structure/function relationship of the PBND: CADY, PEP and MPG, in the general context of drug delivery. It will also highlight the requirement of primary or secondary amphipathic carriers for in vitro and in vivo delivery of therapeutic molecules and provide an update of their pre-clinical evaluation.
    Current pharmaceutical design 02/2008; 14(34):3656-65. · 3.29 Impact Factor