GDF6, a Novel Locus for a Spectrum of Ocular Developmental Anomalies

Department of Ophthalmology and Medical Genetics, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
The American Journal of Human Genetics (Impact Factor: 10.99). 03/2007; 80(2):306-15. DOI: 10.1086/511280
Source: PubMed

ABSTRACT Colobomata represent visually impairing ocular closure defects that are associated with a diverse range of developmental anomalies. Characterization of a chromosome 8q21.2-q22.1 segmental deletion in a patient with chorioretinal coloboma revealed elements of nonallelic homologous recombination and nonhomologous end joining. This genomic architecture extends the range of chromosomal rearrangements associated with human disease and indicates that a broader spectrum of human chromosomal rearrangements may use coupled homologous and nonhomologous mechanisms. We also demonstrate that the segmental deletion encompasses GDF6, encoding a member of the bone-morphogenetic protein family, and that inhibition of gdf6a in a model organism accurately recapitulates the proband's phenotype. The spectrum of disorders generated by morpholino inhibition and the more severe defects (microphthalmia and anophthalmia) observed at higher doses illustrate the key role of GDF6 in ocular development. These results underscore the value of integrated clinical and molecular investigation of patients with chromosomal anomalies.

Download full-text


Available from: Veronica van Heyningen, Jul 02, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal formation is an essential and intricately regulated part of vertebrate development. Humans and mice deficient in growth and differentiation factor 6 (Gdf6) have numerous skeletal abnormalities, including joint fusions and cartilage reductions. The expression of Gdf6 is dynamic and in part regulated by distant evolutionarily conserved cis-regulatory elements. radar/gdf6a is a zebrafish ortholog of Gdf6 and has an essential role in embryonic patterning. Here, we show that radar is transcribed in the cells surrounding and between the developing cartilages of the ventral pharyngeal arches, similar to mouse Gdf6. A 312 bp evolutionarily conserved region (ECR5), 122 kilobases downstream, drives expression in a pharyngeal arch-specific manner similar to endogenous radar/gdf6a. Deletion analysis identified a 78 bp region within ECR5 that is essential for transgene activity. This work illustrates that radar is regulated in the pharyngeal arches by a distant conserved element and suggests radar has similar functions in skeletal development in fish and mammals.
    Developmental Dynamics 04/2010; 239(4):1047-60. DOI:10.1002/dvdy.22251 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate retinotectal axon pathfinding depends upon the correct establishment of dorsal-ventral retinal polarity. We show that dorsal retinal gene expression is regulated by Wnt signaling in the dorsal retinal pigment epithelium (RPE). We find that a Wnt reporter transgene and Wnt pathway components are expressed in the dorsal RPE beginning at 14-16 hours post-fertilization. In the absence of Wnt signaling, tbx5 and Bmp genes initiate normal dorsal retinal expression but are not maintained. The expression of these genes is rescued by the downstream activation of Wnt signaling, and tbx5 is rescued by Bmp signaling. Furthermore, activation of Wnt signaling cannot rescue tbx5 in the absence of Bmp signaling, suggesting that Wnt signaling maintains dorsal retinal gene expression by regulating Bmp signaling. We present a model in which dorsal RPE-derived Wnt activity maintains the expression of Bmp ligands in the dorsal retina, thus coordinating the patterning of these two ocular tissues.
    Development 01/2009; 135(24):4101-11. DOI:10.1242/dev.027367 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Klippel-Feil syndrome (KFS) is a congenital disorder of spinal segmentation distinguished by the bony fusion of anterior/cervical vertebrae. Scoliosis, mirror movements, otolaryngological, kidney, ocular, cranial, limb, and/or digit anomalies are often associated. Here we report mutations at the GDF6 gene locus in familial and sporadic cases of KFS including the recurrent missense mutation of an extremely conserved residue c.866T>C (p.Leu289Pro) in association with mirror movements and an inversion breakpoint downstream of the gene in association with carpal, tarsal, and vertebral fusions. GDF6 is expressed at the boundaries of the developing carpals, tarsals, and vertebrae and within the adult vertebral disc. GDF6 knockout mice are best distinguished by fusion of carpals and tarsals and GDF6 knockdown in Xenopus results in a high incidence of anterior axial defects consistent with a role for GDF6 in the etiology, diversity, and variability of KFS.
    Human Mutation 08/2008; 29(8):1017-27. DOI:10.1002/humu.20741 · 5.05 Impact Factor