Article

Known components of the immunoglobulin A:T mutational machinery are intact in Burkitt lymphoma cell lines with G:C bias

Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
Molecular Immunology (Impact Factor: 3). 05/2007; 44(10):2659-66. DOI: 10.1016/j.molimm.2006.12.006
Source: PubMed

ABSTRACT The basis for mutations at A:T base pairs in immunoglobulin hypermutation and defining how AID interacts with the DNA of the immunoglobulin locus are major aspects of the immunoglobulin mutator mechanism where questions remain unanswered. Here, we examined the pattern of mutations generated in mice deficient in various DNA repair proteins implicated in A:T mutation and found a previously unappreciated bias at G:C base pairs in spectra from mice simultaneously deficient in DNA mismatch repair and uracil DNA glycosylase. This suggests a strand-biased DNA transaction for AID delivery which is then masked by the mechanism that introduces A:T mutations. Additionally, we asked if any of the known components of the A:T mutation machinery underscore the basis for the paucity of A:T mutations in the Burkitt lymphoma cell lines, Ramos and BL2. Ramos and BL2 cells were proficient in MSH2/MSH6-mediated mismatch repair, and express high levels of wild-type, full-length DNA polymerase eta. In addition, Ramos cells have high levels of uracil DNA glycosylase protein and are proficient in base excision repair. These results suggest that Burkitt lymphoma cell lines may be deficient in an unidentified factor that recruits the machinery necessary for A:T mutation or that AID-mediated cytosine deamination in these cells may be processed by conventional base excision repair truncating somatic hypermutation at the G:C phase. Either scenario suggests that cytosine deamination by AID is not enough to trigger A:T mutation, and that additional unidentified factors are required for full spectrum hypermutation in vivo.

Download full-text

Full-text

Available from: Marilyn Diaz, Jul 04, 2015
0 Followers
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immunoglobulin (Ig) repertoire achieves functional diversification through several somatic alterations of the Ig locus. One of these processes, somatic hypermutation (SHM), deposits point mutations into the variable region of the Ig gene to generate higher-affinity variants. Activation-induced cytidine deaminase (AID) converts cytidine to uridine to initiate the hypermutation process. Error-prone versions of DNA repair are believed to then process these lesions into a diverse spectrum of point mutations. We review the current understanding of the molecular mechanisms and regulation of SHM, and also discuss emerging ideas which merit further exploration.
    Annual Review of Genetics 02/2007; 41:107-20. DOI:10.1146/annurev.genet.41.110306.130340 · 18.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation-induced cytidine deaminase (AID) is believed to initiate somatic hypermutation (SHM) by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations). It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG) through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE) and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient) and Nijmegen breakage syndrome (NBS1 deficient) patients. Our results show that, although the pattern of mutations in the variable heavy chain (V(H)) genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C) transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the V(H) genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis.
    PLoS ONE 02/2008; 3(6):e2482. DOI:10.1371/journal.pone.0002482 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To cope with an unpredictable variety of potential pathogenic insults, the immune system must generate an enormous diversity of recognition structures, and it does so by making stepwise modifications at key genetic loci in each lymphoid cell. These modifications proceed through the action of lymphoid-specific proteins acting together with the general DNA-repair machinery of the cell. Strikingly, these general mechanisms are usually diverted from their normal functions, being used in rather atypical ways in order to privilege diversity over accuracy. In this Review, we focus on the contribution of a set of DNA polymerases discovered in the past decade to these unique DNA transactions.
    Nature Reviews Immunology 05/2008; 8(4):302-12. DOI:10.1038/nri2281