Article

Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors

Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, United States
Analytical Chemistry (Impact Factor: 5.83). 03/2007; 79(4):1502-6. DOI: 10.1021/ac0608366
Source: PubMed

ABSTRACT A label-free biosensor was demonstrated using macroporous silicon (pore size >100 nm) one-dimensional photonic band gap structures that are very sensitive to refractive index changes. In this study, we employed Tir-IBD (translocated Intimin receptor-Intimin binding domain) and Intimin-ECD (extracellular domain of Intimin) as the probe and target, respectively. These two recombinant proteins comprise the extracellular domains of two key proteins responsible for the pathogenicity of enteropathogenic Escherichia coli (EPEC). The optical response of the sensor was characterized so that the capture of Intimin-ECD could be quantitatively determined. Our result shows that the concentration sensitivity limit of the sensor is currently 4 microM of Intimin-ECD. This corresponds to a detection limit of approximately 130 fmol of Intimin-ECD. We have also investigated the dependence of the sensor performance on the Tir-IBD probe molecule concentration and the effect of immobilization on the Tir-IBD/Intimin-ECD equilibrium dissociation constant. A calibration curve generated from purified Intimin-ECD solutions was used to quantify the concentration of Intimin-ECD in an E. coli BL21 bacterial cell lysate, and results were validated using gel electrophoresis. This work demonstrates for the first time that a macroporous silicon microcavity sensor can be used to selectively and quantitatively detect a specific target protein with micromolar dissociation constant (Kd) in a milieu of bacterial proteins with minimal sample preparation.

Download full-text

Full-text

Available from: Lisa A Delouise, Jul 01, 2014
1 Follower
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An ultrasensitive two-dimensional photonic crystal biosensor is theoretically demonstrated in this paper. Such device consists of a waveguide and high Q-value microcavities which are realized by introducing line and point defects into the photonic crystal respectively. The band structures and the transmission spectra are obtained from the Finite-Difference –Time-Domain (FDTD) method. The simulation results showed that such device is strongly sensitive to the refractive index of the analyte injected into the point defect. The designed device can be applied for measurements of the refractive index and detection of protein-concentrations.
    Optik - International Journal for Light and Electron Optics 11/2012; 123(21). DOI:10.1016/j.ijleo.2011.09.024 · 0.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lossy mode resonances can be generated with certain polymeric nanostructures, such as those obtained with a multilayered assembly of poly (allylamine hydrochloride) and poly(acrylic acid). This coating is adsorbed by the electrostatic self-assembly technique onto a tapered single-mode optical fiber, in order to evaluate its performance when detecting pH. According to the results reported in this paper, the high sensitivity given by a tapering process in a single-mode optical fiber is increased by the effect of this kind of electromagnetic resonances. Particularly, in a pH range from 4.0 to 6.0, the overall wavelength shift of this sensor reaches 200 nm, and the transmission at the resonance wavelengths can fall down to ${-}{\rm 50}~{\rm dB}$. These data provide results which can be taken into account to detect pH with high accuracy. © 2012 IEEE.
    Sensors and Actuators B Chemical 01/2012; 174:263. · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dans l'objectif de développer une nouvelle activité dans le domaine des biocapteurs, nous avons mené les travaux de cette thèse qui portent sur la conception et la réalisation de nanostructures photoniques à bas de silicium poreux fonctionnalisé pour la détection du glucagon. Affin d'exploiter une transduction optique liée aux propriétés intrinsèques du silicium poreux et une bioréception immunologiqe basée sur l'affinité entre le glucagon et les anticorps monoclonaux spécifiques (Ac. Anti‐glucagon de type IgG1), nous avons réalisé une étude sur les conditions expérimentales d'élaboration de silicium poreux pour la mise en oeuvre d'un prtocole chimique permettant sa biofonctionnalisation. Nous avons aussi mis en place les outils nécessaires pour le suivi des étapes de fonctionnalisation de silicium poreux et préaré des structures photoniques multicouches fonctionnalisées. En effet, après avoir effectué une étude bibliographique sur les biocapteurs en général et les dispositifs optiques en particulier, nous avons opté pour une approche fondée sur l'utilisation d'une microcavité à miroir de Bragg dont la longueur d'onde de résoance est déplacée par la modification de son indice de réfraction due à la présence de l'espèce biologique à détecter. Pour cela nous avons tout d'abord développé un programme de simulation de spectres de réflectances de structures optiques à bae de silicium poreux. Ce programme calcule la réflectance d'une structure poreuse monocouche ou multicouche en appliquant le formalisme des matricesde transfert et ce à partir des indices de réfraction calculés à partir de la composition des milieux effectifs constitués par e silicium poreux (dont la porosité est modulée) remplis par l'espèce biologique étudiée. Cet outil nous a permis dans un premier temps de prévoir l'influence des paramètres structuraux, tels que le diamètre moyen des pores et la porosité, sur la sensibilité de la réponse spectrale de structures monocouches et multicouches (miroir de Bragg et microcavité) dans le suivi de la biofonctionnalisation de ces structures. Dans un deuxième temps, nous avons simulé la réflectance des monocouches de silicium poreux que nous avons élaborées par anodisation électrochimique ain de déterminer leur porosité. La caractérisation structurale de ces monocouches a été complétée par des observations au microscope électronique à balayage (MEB). La fonctionnalisation de ces couches de silicium poreux selon un procédé chimique comportant une étape de silanisation suivie ar une réaction de couplage aldéhyde et le greffage d'éléments immunologiques (anticorps‐antiglucagon) a été contrôlée par réflectométrie et spectroscopie RAMAN. Nous avons ainsi pu d'une part, vérifier la fixation des anticorps anti‐glucagon en volume d'une couche de silicium poreux de forte porosité (~ 90%) et d'autre part estimer le taux de recouvrement de la surface poreuse par ces biorécépteurs (0.4x1012 molécules d'IgG par cm²). Nous avons par la suite appliqué ce procédé de biofonctionnalisation aux microcavités conçue auparavant ce qui nous ont perms de confirmer dans certaines conditions l'efficacité du protocole chimique utilisé pour recouvrir la surface interne du matériu par des molécules organiques.