Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia.

San Raffaele Bio-medical Park Foundation, Rome, Italy.
Blood (Impact Factor: 9.78). 06/2007; 109(10):4432-40. DOI: 10.1182/blood-2006-09-045781
Source: PubMed

ABSTRACT Alteration of lineage-specific transcriptional programs for hematopoiesis causes differentiation block and promotes leukemia development. Here, we show that AML1/ETO, the most common translocation fusion product in acute myeloid leukemia (AML), counteracts the activity of retinoic acid (RA), a transcriptional regulator of myelopoiesis. AML1/ETO participates in a protein complex with the RA receptor alpha (RARalpha) at RA regulatory regions on RARbeta2, which is a key RA target gene mediating RA activity/resistance in cells. At these sites, AML1/ETO recruits histone deacetylase, DNA methyltransferase, and DNA-methyl-CpG binding activities that promote a repressed chromatin conformation. The link among AML1/ETO, heterochromatic RARbeta2 repression, RA resistance, and myeloid differentiation block is indicated by the ability of either siRNA-AML1/ETO or the DNA methylation inhibitor 5-azacytidine to revert these epigenetic alterations and to restore RA differentiation response in AML1/ETO blasts. Finally, RARbeta2 is commonly silenced by hypermethylation in primary AML blasts but not in normal hematopoietic precursors, thus suggesting a role for the epigenetic repression of the RA signaling pathway in myeloid leukemogenesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting. Copyright© Ferrata Storti Foundation.
    Haematologica 12/2014; 99(12):1772-1783. DOI:10.3324/haematol.2013.092007 · 5.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The success of all-trans retinoic acid (ATRA) therapy in acute promeylocytic leukemia (APL) has spawned numerous attempts to translate the paradigm of differentiation therapy to non-APL acute myelocytic leukemia (AML). However, the results of clinical trials have been overall disappointing. In this review we discuss the mechanism of retinoic acid signaling and the results of major clinical trials that have attempted to incorporate ATRA into AML regimens. We discuss recent evidence that indicate that the retinoic acid signaling pathway may be dysfunctional in AML. Preliminary studies suggest that targeting the pathways that modify retinoic acid receptor activity may reactivate the dormant retinoic acid-signaling pathway. Such strategies may revive the ability of ATRA to induce myeloid differentiation and apoptosis in non-APL AML. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Blood Reviews 01/2015; DOI:10.1016/j.blre.2015.01.002 · 5.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid (RA) is the major bioactive metabolite of retinol or vitamin A, which induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
    Molecular Aspects of Medicine 12/2014; 41. DOI:10.1016/j.mam.2014.12.003 · 10.30 Impact Factor