Article

Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia.

San Raffaele Bio-medical Park Foundation, Rome, Italy.
Blood (Impact Factor: 10.43). 06/2007; 109(10):4432-40. DOI: 10.1182/blood-2006-09-045781
Source: PubMed

ABSTRACT Alteration of lineage-specific transcriptional programs for hematopoiesis causes differentiation block and promotes leukemia development. Here, we show that AML1/ETO, the most common translocation fusion product in acute myeloid leukemia (AML), counteracts the activity of retinoic acid (RA), a transcriptional regulator of myelopoiesis. AML1/ETO participates in a protein complex with the RA receptor alpha (RARalpha) at RA regulatory regions on RARbeta2, which is a key RA target gene mediating RA activity/resistance in cells. At these sites, AML1/ETO recruits histone deacetylase, DNA methyltransferase, and DNA-methyl-CpG binding activities that promote a repressed chromatin conformation. The link among AML1/ETO, heterochromatic RARbeta2 repression, RA resistance, and myeloid differentiation block is indicated by the ability of either siRNA-AML1/ETO or the DNA methylation inhibitor 5-azacytidine to revert these epigenetic alterations and to restore RA differentiation response in AML1/ETO blasts. Finally, RARbeta2 is commonly silenced by hypermethylation in primary AML blasts but not in normal hematopoietic precursors, thus suggesting a role for the epigenetic repression of the RA signaling pathway in myeloid leukemogenesis.

Download full-text

Full-text

Available from: Lorena Travaglini, Jul 08, 2015
0 Followers
 · 
160 Views
  • Source
    • "The pharmacological concentration of RA of 1 mM overcomes the block on differentiation by dissociation of the co-repressor NCor–HDAC complex where DNMTs are also recruited (Di Croce et al., 2002). In NB4 cells, RA acts not only by recruiting HAT (hypoxanthine/aminopterin/thymidine) enzymes, but also by reducing total DNMT expression and activity by almost 40% (Fazi et al., 2005), in correlation with demethylation of specific sites on the promoter of RA-target gene, RARb2, which is critical for responsiveness to RA (Fazi et al., 2008). In addition, DNMT inhibitors may be responsible for demethylation at specific sites on the promoters of RA target genes (Brueckner et al., 2005) and facilitate differentiation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic silencing of cancer-related genes by abnormal methylation and the reversal of this process by DNA methylation inhibitors represents a promising strategy in cancer therapy. As DNA methylation affects gene expression and chromatin structure, we investigated the effects of novel DNMT (DNA methyltransferase) inhibitor, RG108, alone and in its combinations with structurally several HDAC (histone deacetylase) inhibitors [sodium PB (phenyl butyrate) or BML-210 (N-(2-aminophenyl)-N'phenyloctanol diamine), and all-trans RA (retinoic acid)] in the human PML (promyelocytic leukaemia) NB4 cells. RG108 at different doses from 20 to 100 μM caused time-, but not a dose-dependent inhibition of NB4 cell proliferation without cytotoxicity. Temporal pretreatment with RG108 before RA resulted in a dose-dependent cell growth inhibition and remarkable acceleration of granulocytic differentiation. Prolonged treatments with RG108 and RA in the presence of HDAC inhibitors significantly increased differentiation. RG108 caused time-dependent re-expression of methylation-silenced E-cadherin, with increase after temporal or continuous treatments with RG108 and RA, or RA together with PB in parallel, in cell maturation, suggesting the role of E-cadherin as a possible therapeutic marker. These processes required both PB-induced hyperacetylation of histone H4 and trimethylation of histone H3 at lysine 4, indicating the cooperative action of histone modifications and DNA methylation/demethylation in derepression of E-cadherin. This work provides novel experimental evidence of the beneficial role of the DNMT inhibitor RG108 in combinations with RA and HDACIs in the effective differentiation of human PML based on epigenetics.
    Cell Biology International 07/2012; 36(11):1067-78. DOI:10.1042/CBI20110649 · 1.64 Impact Factor
  • Source
    • "To generate the mutations the QuikChange Site-Directed Mutagenesis Kit (Stratagene ) was used according to manufacturer instructions. Human embryonic kidney 293T cells (2 3 10 5 ) were plated in 12-well plates and transiently cotransfected by the Lipofectamine Reagent method (Invitrogen ) with 10, 50, or 100 ng of the pcDNA3 vectors containing or not the HA-tagged-AML1/ETO cDNAs (Fazi et al., 2007), 300 ng of the LUC reporter constructs described above. U937-Mock and U937-A/E cells were pretreated or not with 100 mM ZnSO4 (16 hr) and then plated (5 3 10 5 /well) in 24-well plates. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic transcription factors are involved in chromosomal translocations, which generate fusion proteins contributing to leukemia pathogenesis. Analysis of patient's primary leukemia blasts revealed that those carrying the t(8;21) generating AML1/ETO, the most common acute myeloid leukemia-associated fusion protein, display low levels of a microRNA-223 (miR-223), a regulator of myelopoiesis. Here, we show that miR-223 is a direct transcriptional target of AML1/ETO. By recruiting chromatin remodeling enzymes at an AML1-binding site on the pre-miR-223 gene, AML1/ETO induces heterochromatic silencing of miR-223. Ectopic miR-223 expression, RNAi against AML1/ETO, or demethylating treatment enhances miR-223 levels and restores cell differentiation. Here, we identify an additional action for a leukemia fusion protein linking the epigenetic silencing of a microRNA locus to the differentiation block of leukemia.
    Cancer Cell 12/2007; 12(5):457-66. DOI:10.1016/j.ccr.2007.09.020 · 23.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Die chronische lymphatische Leukämie (CLL) ist die häufigste Leukämie in den westlichen Ländern. Neben bekannten chromosomalen Alterationen, die häufig Deletionen und numerische Aberrationen umfassen, gibt es immer mehr Hinweise darauf, dass epigenetische Prozesse zum malignen Phänotyp der CLL beitragen. Bisher ist noch kein alleiniger Pathomechanismus bekannt, der zur Entstehung der CLL führt. Vielmehr scheinen gleichzeitige Veränderungen in verschiedenen Signalkaskaden zur Dysregulation des Zellzyklus und der Apoptoseinduktion zu führen. Aus verschiedenen Signalwegen, die mit der Entstehung maligner Erkrankungen in Verbindung stehen, kann durch epigenetische Stilllegung in so gut wie allen Tumorarten eine große Anzahl an Genen dysreguliert sein. Mit Hilfe eines Kandidatengenansatzes wurde im Rahmen dieser Studie bei 32 Patienten mit CLL der Methylierungsstatus von 17 tumorassoziierten Genen auf Basis der methylierungsspezifischen PCR untersucht. Unter den CLL-Proben konnte aberrante Methylierung nachgewiesen werden bei SFRP1 (68,8%), SFRP2 (65,6%), DAPK1 (50,0%), E cadherin (21,9%), SFRP4 (15,6%), SOCS3 (15,6%), p15 (9,4%), p16 (6,3%), RARbeta2 (3,1%), SFRP5 (3,1%) und TIMP3 (3,1%). DAPK2, hMLH1, MGMT, p73, SOCS1 und TIMP2 zeigten keine Methylierung. Hypermethylierung von mindestens einem Gen war bei 90,6 % der Patientenproben zu sehen, und bis zu 7 der 17 Gene waren gleichzeitig methyliert. Aberrante Methylierung kam in sämtlichen Krankheitsstadien vor. Diese Ergebnisse zeigen, dass aberrante Methylierung von CpG-Inseln ein häufiges Phänomen bei der CLL ist. Sie umfasst Signalwege wie den Wnt-Signalweg, Apoptoseregulation, Zellzykluskontrolle sowie Zellinvasion und adhäsion. Epigenetische Unterdrückung der Genexpression von Tumorsuppressorgenen und anderen kritischen Genen gibt Tumorzellen eine Alternative zur Geninaktivierung durch Mutationen oder Deletionen. Zusätzlich zu genetischen Alterationen können Störungen auf epigenetischen Regulationsebenen an der Pathogenese der CLL beteiligt sein und somit eine molekulare Grundlage für die Entwicklung von Biomarkern und epigenetisch ausgerichteten Therapiestrategien bieten. Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries. Apart from chromosomal alterations comprising deletions and numeric aberrations there is increasing evidence that epigenetic processes contribute to the malignant phenotype of CLL. There is no known pathogenic mechanism inducing CLL, in fact concomitant alterations in various signaling pathways seem to lead to dysregulation of cell cycle and apoptosis. A large number of genes affecting cancer-related pathways may be dysregulated by epigenetic silencing in virtually all tumor types. Using a candidate-gene approach we analyzed by methylation-specific polymerase chain reaction the CpG island methylation status of 17 well-characterized cancer-related genes in 32 patients with CLL. Aberrant methylation among the samples of patients with CLL was shown for SFRP1 (68.8%), SFRP2 (65.6%), DAPK1 (50.0%), E cadherin (21.9%), SFRP4 (15.6%), SOCS3 (15.6%), p15 (9.4%), p16 (6.3%), RARbeta2 (3.1%), SFRP5 (3.1%) und TIMP3 (3.1%). For DAPK2, hMLH1, MGMT, p73, SOCS1 and TIMP2 no hypermethylation was detected. Hypermethylation of at least one gene was observed in 90.6% of the samples. Up to 7 of 17 gene promoter regions examined were concurrently methylated. Hypermethylation occurred in all Rai stages without a preference for advanced stages. Our results show that aberrant CpG island methylation affecting cancer-related pathways such as Wnt signaling, regulation of apoptosis, cell cycle control and tissue invasion is a common phenomenon in CLL. Epigenetic silencing of tumor suppressor genes as well as other critical genes is an alternative mechanism of gene inactivation by mutations or deletions in malignant cells. In addition to genetic alterations, epigenetic disturbances may be involved in the pathogenesis of CLL and thus may provide a molecular rationale for therapeutic approaches.