Theoretical and experimental studies on the surface structures of conjugated rod-coil block copolymer brushes

Department of Materials Science and Engineering, University of Washington Seattle, Seattle, Washington, United States
Langmuir (Impact Factor: 4.38). 03/2007; 23(5):2805-14. DOI: 10.1021/la0631769
Source: PubMed

ABSTRACT A combined theoretical and experimental investigation of conjugated rod-coil block copolymer brushes is reported. The theoretical study for the surface structures of rod-coil block copolymer brushes was established based on the simulation method of dissipative particle dynamics. The effects of solvent stimuli, grafting density, and rod-coil block ratio of the polymer brushes on the surface structures were examined. The rod blocks of polymer brushes were found to be well-dispersed on the surface in their good solvents. On the other hand, aggregative domains of the rod blocks were formed in their poor solvents with the conformations of isolated islands or worm-like structures depending on the grafting density of the polymer brushes. The aggregative domains tend to stay on top of the coil blocks for small rod-to-coil block ratio. However, the submergence of the aggregative domains into the coil blocks is thermodynamically preferred for large enough rod-to-coil block ratio. New multifunctional amphiphilic rod-coil block copolymers, poly-[2,7-(9,9-di-n-hexylfluorene)]-block-poly-[poly(ethylene glycol) methyl ether methacrylate]-block-poly-[3(tripropoxysilyl)propyl methacrylate] (PF-b-PPEGMA-b-PPOPS), with two different block ratios were synthesized and used to prepare the corresponding polymer brushes via the grafting- method. The effects of stimuli factors on the surface structures characterized by the atomic force microscopy images were consistent with the theoretical results. Furthermore, the photophysical properties of PF-b-PPEGMA-b-PPOPS brushes were significantly varied by the solvent stimuli. The emission peaks originated from the aggregation and/or excimer formation of PF blocks were observed after methanol treatment. The photoluminescence intensity and its efficiency were well correlated to the surface structure and the methanol content in mixed solvents. Our study demonstrates how the surface structures and photophysical properties of rod-coil block copolymer brushes response to environmental stimuli.

  • Source
    • "[2007] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Computer simulations and in particular mesoscopic simulation techniques such as the dissipative particle dynamics (DPD) technique, enable researchers to study the complexities of soft material and polymeric systems by performing in silico experimentations alongside in vivo experiments. In addition, these mesoscopic simulations allow scientists and engineers to characterize and optimize the actual experiments in a more efficient manner. The DPD is one the most reliable mesoscopic simulation techniques for phenomenological investigation of soft matter and polymeric systems. In this review, which is complimentary to an earlier review also by the present authors on DPD methodology and complex fluid application (Moeendarbary et al., 2009), we categorize and review the notable published works, and document efforts that applied the DPD simulation technique to various important soft matter and polymeric applications, over the last decade.
    International Journal of Applied Mechanics 03/2010; 02(1-01):161-190. DOI:10.1142/S1758825110000469 · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of new rod–coil block copolymers having a well-defined terfluorene unit as the rigid segment with three different electron transporting moieties as the flexible part, such as side chain oxadiazole (TFPOXD), side chain quinoline (TFPQN) and a molecule containing two oxadiazole rings in the side chain (TFPDOXD), were synthesized using the atom transfer radical polymerization (ATRP) technique. All the synthesized copolymers were extensively examined with respect to their optical properties as pristine films, upon thermal annealing (200 °C for 30 min in air) and photo-oxidation treatment in air. Thermal annealing of the block copolymers resulted in stable blue light emission from TFPOXD and TFPDOXD while TFPQN showed the appearance of the undesired 520 nm emission band. In addition, TFPOXD does not exhibit the low-energy emission band at 520 nm after photo-oxidation under prolonged diffuse UV radiation at ambient atmosphere, despite the fluorenone formation on the terfluorene segment, in contrast to all the other copolymers.
    European Polymer Journal 12/2007; 43(12):5065-5075. DOI:10.1016/j.eurpolymj.2007.09.019 · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis, structures and multifunctional sensory properties of amphiphilic poly[2,7-(9,9-dihexylfluorene)]-block-poly[2-(dimethylamino)ethyl methacrylate] (PF-b-PDMAEMA) rod-coil diblock copolymers are reported. The new copolymers, with PDMAEMA coil lengths of 31, 45, 93 and 185 repeating units, were synthesized by atom transfer radical polymerization. The surface structures and photophysical properties of the synthesized polymers were studied through the variation of solvent composition (water–THF), temperature, and pH. The PF7-b-PDMAEMA45 structure changed from spheres to separate cylinders, bundles of cylinders and spiral-shaped micelles as the solvent composition changed from 0 to 90 wt% water in THF. However, the long-range order structure of spiral-shaped loops was not observed at a long coil length. The micellar aggregates of PF7-b-PDMAEMA45 in water showed a reversible surface structure transformation from cylinder-bundles to spheres on heating from 25 to 75 °C. The variation of the micelle size with temperature was judged to be similar from both atomic force microscopy (AFM) and dynamic light scattering (DLS) measurements. The intermolecular PF aggregations led to fluorescence quenching and a blue-shift in the absorption spectra of the block copolymer as the water content increased. The photoluminescence (PL) intensity of PF7-b-PDMAEMA45 in water was thermoreversible based on its lower critical solution temperature. The PL characteristics suggested the new copolymers behave as an on/off fluorescence indicator of temperature or pH, with a reversible “on–off” profile at an elevated temperature in water: the pH–fluorescence intensity profile switched from “off–on” to “on–off” as the temperature increased. The present study suggests that PF-b-PDMAEMAcopolymers have potential applications as multifunctional sensory materials toward solvent, temperature, and pH.
    Journal of Materials Chemistry 01/2008; 18(33). DOI:10.1039/b807118g · 7.44 Impact Factor
Show more


1 Download
Available from