Article

Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes.

Center for Environmental Stress and Adaptation Research, Department of Genetics, The University of Melbourne, Victoria, Australia.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.68). 04/2007; 274(1611):771-8. DOI: 10.1098/rspb.2006.0247
Source: PubMed

ABSTRACT Artificially selected lines are widely used to investigate the genetic basis of quantitative traits and make inferences about evolutionary trajectories. Yet, the relevance of selected traits to field fitness is rarely tested. Here, we assess the relevance of thermal stress resistance artificially selected in the laboratory to one component of field fitness by investigating the likelihood of adult Drosophila melanogaster reaching food bait under different temperatures. Lines resistant to heat reached the bait more often than controls under hot and cold conditions, but less often at intermediate temperatures, suggesting a fitness cost of increased heat resistance but not at temperature extremes. Cold-resistant lines were more common at baits than controls under cold as well as hot field conditions, and there was no cost at intermediate temperatures. One of the replicate heat-resistant lines was caught less often than the others under hot conditions. Direct and correlated patterns of responses in laboratory tests did not fully predict the low performance of the heat selected lines at intermediate temperatures, nor the high performance of the cold selected lines under hot conditions. Therefore, lines selected artificially not only behaved partly as expected based on laboratory assays but also evolved patterns only evident in the field releases.

0 Bookmarks
 · 
34 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1. Flowering time is frequently under selection due to a combination of abiotic, biotic and intrinsic factors. Evolution in response to this selection is likely to have broad effects, altering not only flowering time but reproductive phenology and, potentially, traits throughout the life cycle. We know little about the broader phenotypic changes associated with evolutionary shifts in flowering time, and the extent to which expression of these changes depends on local environmental conditions. 2. After three generations of selection for early- and late-flowering, we grew plants of the herb Campanulastrum americanum in contrasting light environments (light gap and understorey) in its home population. 3. Response to selection on flowering time and correlated responses in reproductive phenology were expressed across light environments with the reproduction of early-flowering lines being over 2 weeks ahead of late-flowering lines. Plants in the understorey delayed initiation of flowering but accelerated flower deployment, fruit maturation and the end of reproduction, resulting in a condensed reproductive period. 4. Timing of seed dispersal influences whether offspring grow as annuals or biennials in C. americanum. Because evolution of flowering time shifted reproductive phenology, it is likely to alter life history frequency. In contrast, understorey habitats both delayed flowering and accelerated reproductive phenology, yielding no expected life history change. 5. Synthesis. Evolution of flowering time altered the phenology of all subsequent reproductive traits and is also likely to affect offspring traits. This ripple effect of changes in flowering time indicates that it is essential to recognize genetic and functional linkages among traits to understand potential life cycle consequences of selection on a single character.
    Journal of Ecology 07/2012; 100(4):852-861. · 5.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellular stress response has long been the primary model for studying the molecular basis of thermal adaptation, yet the link between gene expression, RNA metabolism and physiological responses to thermal stress remains largely unexplored. We address this by comparing the transcriptional and physiological responses of three geographically distinct populations of D. melanogaster from eastern Australia in response to, and recovery from, a severe heat stress with and without a pre-stress hardening treatment. We focus on Starvin (stv), recently identified as an important thermally responsive gene. Intriguingly, stv encodes seven transcripts from alternative transcription sites and alternative splicing, yet appears to be rapidly heat-inducible. First, we show genetic differences in upper thermal limits of the populations tested. We then demonstrate that the stv locus does not ubiquitously respond to thermal stress but is expressed as three distinct thermal and temporal RNA phenotypes (isoforms). The shorter transcript isoforms are rapidly up-regulated under stress in all populations and show similar molecular signatures to Heat shock proteins. Multiple stress exposures seem to generate a reserve of pre-mRNAs, effectively 'priming' the cells for subsequent stress. Remarkably, we demonstrate a bypass in the splicing blockade in these isoforms, suggesting an essential role for these transcripts under heat stress. Temporal profiles for the weakly heat responsive stv isoform subset show opposing patterns in the two most divergent populations. Innate and induced transcriptome responses to hyperthermia are complex, and warrant moving beyond gene-level analyses. This article is protected by copyright. All rights reserved.
    Molecular Ecology 11/2014; · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.
    Evolutionary Applications 03/2014; · 4.15 Impact Factor

Full-text

Download
0 Downloads
Available from