Article

Inhibition of 5,10-methenyltetrahydrofolate synthetase.

Cornell University, Graduate Field of Biochemistry, Molecular and Cell Biology, Ithaca, NY 14853, USA.
Archives of Biochemistry and Biophysics (Impact Factor: 3.37). 03/2007; 458(2):194-201. DOI: 10.1016/j.abb.2006.12.023
Source: PubMed

ABSTRACT The interaction of 5-formyltetrahydrofolate analogs with murine methenyltetrahydrofolate synthetase (MTHFS) was investigated using steady-state kinetics, molecular modeling, and site-directed mutagenesis. MTHFS catalyzes the irreversible cyclization of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate. Folate analogs that cannot undergo the rate-limiting step in catalysis were inhibitors of murine MTHFS. 5-Formyltetrahydrohomofolate was an effective inhibitor of murine MTHFS (K(i)=0.7 microM), whereas 5-formyl,10-methyltetrahydrofolate was a weak inhibitor (K(i)=10 microM). The former, but not the latter, was slowly phosphorylated by MTHFS. 5-Formyltetrahydrohomofolate was not a substrate for murine MTHFS, but was metabolized when the MTHFS active site Y151 was mutated to Ala. MTHFS active site residues do not directly facilitate N10 attack on the on the N5-iminium phosphate intermediate, but rather restrict N10 motion around N5. Inhibitors specifically designed to block N10 attack appear to be less effective than the natural 10-formyltetrahydrofolate polyglutamate inhibitors.

0 Bookmarks
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A paralog (here termed COG0212) of the ATP-dependent folate salvage enzyme 5-formyltetrahydrofolate cycloligase (5-FCL) occurs in all domains of life and, although typically annotated as 5-FCL in pro- and eukaryotic genomes, is of unknown function. COG0212 is similar in overall structure to 5-FCL, particularly in the substrate binding region, and has distant similarity to other kinases. The Arabidopsis thaliana COG0212 protein was shown to be targeted to chloroplasts and to be required for embryo viability. Comparative genomic analysis revealed that a high proportion (19%) of archaeal and bacterial COG0212 genes are clustered on the chromosome with various genes implicated in thiamin metabolism or transport but showed no such association between COG0212 and folate metabolism. Consistent with the bioinformatic evidence for a role in thiamin metabolism, ablating COG0212 in the archaeon Haloferax volcanii caused accumulation of thiamin monophosphate. Biochemical and functional complementation tests of several known and hypothetical thiamin-related activities (involving thiamin, its breakdown products, and their phosphates) were, however, negative. Also consistent with the bioinformatic evidence, the COG0212 proteins from A. thaliana and prokaryote sources lacked 5-FCL activity in vitro and did not complement the growth defect or the characteristic 5-formyltetrahydrofolate accumulation of a 5-FCL-deficient (ΔygfA) Escherichia coli strain. We therefore propose (a) that COG0212 has an unrecognized yet sometimes crucial role in thiamin metabolism, most probably in salvage or detoxification, and (b) that is not a 5-FCL and should no longer be so annotated.
    Functional & Integrative Genomics 05/2011; 11(3):467-78. · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable. WIREs Syst Biol Med 2013. doi: 10.1002/wsbm.1209 For further resources related to this article, please visit the WIREs website.
    Wiley Interdisciplinary Reviews Systems Biology and Medicine 02/2013; · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of metabolic compartmentation in spatially organizing metabolic enzymes into pathways, regulating flux through metabolic pathways, and controlling the partitioning of metabolic intermediates among pathways is appreciated, but our understanding of the mechanisms that establish metabolic architecture and mediate communication and regulation among interconnected metabolic pathways and networks is still incomplete. This review discusses recent advancements in our understanding of metabolic compartmentation within the pathways that constitute the folate-mediated one-carbon metabolic network and emerging evidence for a need to regulate the trafficking of folates among compartmentalized metabolic pathways.
    Advances in Nutrition 07/2011; 2(4):325-31. · 3.20 Impact Factor

Full-text

Download
0 Downloads
Available from