Netherlands Twin Register: From Twins to Twin Families

Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 1, 1081 BT Amsterdam, the Netherlands.
Twin Research and Human Genetics (Impact Factor: 1.92). 01/2007; 9(6):849-57. DOI: 10.1375/183242706779462426
Source: PubMed

ABSTRACT In the late 1980s The Netherlands Twin Register (NTR) was established by recruiting young twins and multiples at birth and by approaching adolescent and young adult twins through city councils. The Adult NTR (ANTR) includes twins, their parents, siblings, spouses and their adult offspring. The number of participants in the ANTR who take part in survey and / or laboratory studies is over 22,000 subjects. A special group of participants consists of sisters who are mothers of twins. In the Young NTR (YNTR), data on more than 50,000 young twins have been collected. Currently we are extending the YNTR by including siblings of twins. Participants in YNTR and ANTR have been phenotyped every 2 to 3 years in longitudinal survey studies, since 1986 and 1991 for the YNTR and ANTR, respectively. The resulting large population-based datasets are used for genetic epidemiological studies and also, for example, to advance phenotyping through the development of new syndrome scales based on existing items from other inventories. New research developments further include brain imaging studies in selected and unselected groups, clinical assessment of psychopathology through interviews, and cross-referencing the NTR database to other national databases. A large biobank enterprise is ongoing in the ANTR in which blood and urine samples are collected for genotyping, expression analysis, and metabolomics studies. In this paper we give an update on the YNTR and ANTR phenotyping and on the ongoing ANTR biobank studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite twin and family studies having demonstrated a substantial heritability of individual differences in intelligence, no genetic variants have been robustly associated with normal-range intelligence to date. This is largely ascribed to the high polygenicity of intelligence, i.e., to its being subject to the effects of a large number of genes of individually small effect. Intellectual disability, on the other hand, frequently involves large effects of single genetic mutations, many of which have been identified. The present paper aims to 1) introduce the reader to the current state of genetic intelligence research, including next-generation sequencing and the analysis of rare genetic variants, and 2) examine the possible effects of known disability genes on normal-range intelligence. The rationale for the latter rests on the fact that genetic variants affecting continuous, polygenic traits are often concentrated in the same areas of the genome as those underlying related monogenic phenotypes. Using an existing pool of known intellectual disability genes, we constructed a set of 168 candidate genes for normal-range intelligence, and tested their association with intelligence in 191 individuals (aged 5–18) sampled from the high and low ends of the IQ distribution. In particular, we 1) employed exon sequencing to examine the possible effects of rare genetic variants in the 168 genes, and 2) used polygenic prediction to examine the overall effect of common genetic variants in the candidate gene set in a larger sample (N = 2125, mean age 20.4, SD = 14.1). No significant association between the candidate gene set and intelligence was detected.
    Intelligence 04/2015; 49. DOI:10.1016/j.intell.2014.12.001 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with a higher education are more likely to migrate, increasing the chance of meeting a spouse with a different ancestral background. In this context, the presence of strong educational assortment can result in greater ancestry differences within more educated spouse pairs, while less educated individuals are more likely to mate with someone with whom they share more ancestry. We examined the association between educational attainment and Froh (= the proportion of the genome consisting of runs of homozygosity [ROHs]) in ~2,000 subjects of Dutch ancestry. The subjects’ own educational attainment showed a nominally significant negative association with Froh (p = .045), while the contribution of parental education to offspring Froh was highly significant (father: p < 10-5; mother: p = 9×10-5), with more educated parents having offspring with fewer ROHs. This association was significantly and fully mediated by the physical distance between parental birthplaces (paternal education: pmediation = 2.4 × 10-4; maternal education: pmediation = 2.3 × 10-4), which itself was also significantly associated with Froh (p = 9 × 10-5). Ancestry-informative principal components from the offspring showed a significantly decreasing association with geography as parental education increased, consistent with the significantly higher migration rates among more educated parents. Parental education also showed a high spouse correlation (Spearman’s rho = .66, p = 3 × 10-262). We show that less educated parents are less likely to mate with the more mobile parents with a higher education, creating systematic differences in homozygosity due to ancestry differences not directly captured by ancestry-informative principal components (PCs). Understanding how behaviors influence the genomic structure of a population is highly valuable for studies on the genetic etiology of behavioral, cognitive, and social traits.
    PLoS ONE 03/2015; 10(3). DOI:10.1371/journal.pone.0118935 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monozygotic (MZ) twins are genetically identical at conception, making them informative subjects for studies on somatic mutations. Copy number variants (CNVs) are responsible for a substantial part of genetic variation, have relatively high mutation rates, and are likely to be involved in phenotypic variation. We conducted a genome-wide survey for post-twinning de novo CNVs in 1,097 MZ twin pairs. Comparisons between MZ twins were made by CNVs measured in DNA from blood or buccal epithelium with the Affymetrix 6.0 microarray and two calling algorithms. In addition, CNV concordance rates were compared between the different sources of DNA, and gene-enrichment association analyses were conducted for thought problems (TP) and attention problems (AP) using CNVs concordant within MZ pairs. We found a total of 153 putative post-twinning de novo CNVs >100 kb, of which the majority resided in 15q11.2. Based on the discordance of raw intensity signals a selection was made of 20 de novo CNVs for a qPCR validation experiments. Two out of 20 post-twinning de novo CNVs were validated with qPCR in the same twin pair. The 13-year-old MZ twin pair that showed two discordances in CN in 15q11.2 in their buccal DNA did not show large phenotypic differences. From the remaining 18 putative de novo CNVs, 17 were deletions or duplications that were concordant within MZ twin pairs. Concordance rates within twin pairs of CNV calls with CN � 2 were �80%. Buccal epithelium-derived DNA showed a slightly but significantly higher concordance rate, and blood-derived DNA showed significantly more concordant CNVs per twin pair. The gene-enrichment analyses on concordant CNVs showed no significant associations between CNVs overlapping with genes involved in neuronal processes and TP or AP after accounting for the source of DNA.
    Twin Research and Human Genetics 02/2015; 18(1):1-12. DOI:10.1017/thg.2014.86 · 1.92 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014