Photoprotective effects of green tea polyphenols

Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Photodermatology Photoimmunology and Photomedicine (Impact Factor: 1.3). 03/2007; 23(1):48-56. DOI: 10.1111/j.1600-0781.2007.00262.x
Source: PubMed

ABSTRACT Non-melanoma skin cancer is the most common malignancy in humans and is equivalent to the incidence of malignancies in all other organs combined in the United States. Current methods of prevention depend on sunscreens in humans, efficacy of which is largely undetermined for non-melanoma skin cancers. Green tea polyphenols have the greatest effect with respect to chemoprevention and have been found to be most potent at suppressing the carcinogenic activity of UV radiation. They protect against many of the other damaging effects of UV radiation such as UV-induced sunburn response, UV-induced immunosuppression and photoaging of the skin. They exert their photoprotective effects by various cellular, molecular and biochemical mechanisms in in vitro and in vivo systems. Green tea polyphenols thus have the potential, when used in conjunction with traditional sunscreens, to further protect the skin against the adverse effects of ultraviolet radiation.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel (EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on environment and health since the last full Assessment of 2006, paying attention to the interactions between ozone depletion and climate change. Simultaneous publication of the Assessment in the scientific literature aims to inform the scientific community how their data, modeling and interpretations are playing a role in information dissemination to the Parties to the Montreal Protocol, other policymakers and scientists.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Green tea polyphenol (GTP) is water-soluble medical additives which possess particular significance as free radical scavengers or antioxidants in biological systems. The present study investigated the protective effect of green tea polyphenols against ultraviolet B (UVB)–induced damage to human retinal pigment epithelial (RPE) cells. Microstructure of RPE cells was examined by transmission electron microscopy and the expression of c-fos was examined in messenger ribonucleic acid (mRNA) as well as protein level by using real-time polymerase chain reaction (PCR) and western blot assay. The results indicated that UVB irradiation-induced injuries in RPE cells were markedly suppressed by GTP. The mechanism of GTP protected RPE cells from UVB damage might be related to signal pathway regulation and DNA restoration, suggesting GTP as a potential candidate for further development and aslo a chemoprotective material for prevention of UVB exposure induced eye diseases.
    Journal of medicinal plant research 03/2012; 6(9). DOI:10.5897/JMPR11.1546 · 0.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bee products have long been used in traditional medicine. The raw materials, crude extracts and purified active compounds from them have been found to exhibit interesting bioactivities, such as antimicrobial, anti-inflammatory and antioxidant activities. In addition, they have been widely used in the treatment of many immune-related diseases, as well as in recent times in the treatment of tumors. Bee product peptides induce apoptotic cell death in vitro in several transformed (cancer) human cell lines, including those derived from renal, lung, liver, prostate, bladder and lymphoid cancers. These bioactive natural products may, therefore, prove to be useful as part of a novel targeted therapy for some types of cancer, such as prostate and breast cancer. This review summarizes the current knowledge regarding the in vivo and in vitro potential of selective bee products against tumor cells.
    Asian Pacific Journal of Tropical Biomedicine 05/2014; 4(5):337-44. DOI:10.12980/APJTB.4.2014C1262


Available from