Article

FAD mutants unable to increase neurotoxic Aβ 42 suggest that mutation effects on neurodegeneration may be independent of effects on Aβ

Department of Psychiatry, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA.
Journal of Neurochemistry (Impact Factor: 4.24). 06/2007; 101(3):674-81. DOI: 10.1111/j.1471-4159.2006.04391.x
Source: PubMed

ABSTRACT Strong support for a primary causative role of the Abeta peptides in the development of Alzheimer's disease (AD) neurodegeneration derives from reports that presenilin familial AD (FAD) mutants alter amyloid precursor protein processing, thus increasing production of neurotoxic Abeta 1-42 (Abeta 42). This effect of FAD mutants is also reflected in an increased ratio of peptides Abeta 42 over Abeta 1-40 (Abeta 40). In the present study, we show that several presenilin 1 FAD mutants failed to increase production of Abeta 42 or the Abeta 42/40 ratio. Our data suggest that the mechanism by which FAD mutations promote neurodegeneration and AD may be independent of their effects on Abeta production.

Full-text

Available from: Lia Baki, May 16, 2015
0 Followers
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD), the most prevalent form of dementia worldwide, can be deemed as the next global health epidemic. The biochemistry underlying deposition of amyloid beta (A β) and hyperphosphorylated tau aggregates in AD has been extensively studied. The oligomeric forms of A β that are derived from the normal soluble A β peptides are believed to be the most toxic. However, it is the fibrillar Aβ form that aggregates as amyloid plaques and cerebral amyloid angiopathy, which serve as pathological hallmarks of AD. Moreover, deposits of abnormally phosphorylated tau that form soluble toxic oligomers and then accumulate as neurofibrillary tangles are an essential part of AD pathology. Currently, many strategies are being tested that either inhibit, eradicate or prevent the development of plaques in AD. An exciting new approach on the horizon is the immunization approach. Dramatic results from AD animal models have shown promise for active and passive immune therapies targeting A β. However, there is very limited data in humans that suggests a clear benefit. Some hurdles faced with these studies arise from complications noted with therapy. Encephalitis has been reported in trials of active immunization and vasogenic edema or amyloid - related imaging abnormalities (ARIA) has been reported with passive immunization in a minority of patients. As yet, therapies targeting only tau are still limited to mouse models with few studies targeting both pathologies. As the majority of approaches tried so far are based on targeting a self - protein, though in an abnormal conformation, benefits of therapy need to be balanced against the possible risks of stimulating excessive toxic inflammation. For better efficacy, future strategies will need to focus on the toxic oligomers and targeting all aspects of AD pathology.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the significant amount of work being carried out to investigate the therapeutic potential of docosahexaenoic acid (DHA) in Alzheimer's disease (AD), the mechanism by which DHA affects amyloid-β precursor protein (AβPP)-induced metabolic changes has not been studied. To elucidate the metabolic phenotypes (metabotypes) associated with DHA therapy via metabonomic profiling of an AD cell model using gas chromatography time-of-flight mass spectrometry (GC/TOFMS). The lysate and supernatant samples of CHO-wt and CHO-AβPP695 cells treated with DHA and vehicle control were collected and prepared for GC/TOFMS metabonomics profiling. The metabolic profiles were analyzed by multivariate data analysis techniques using SIMCA-P+ software. Both principal component analysis and subsequent partial least squares discriminant analysis revealed distinct metabolites associated with the DHA-treated and control groups. A list of statistically significant marker metabolites that characterized the metabotypes associated with DHA treatment was further identified. Increased levels of succinic acid, citric acid, malic acid and glycine and decreased levels of zymosterol, cholestadiene and arachidonic acid correlated with DHA treatment effect. DHA levels were also found to be increased upon treatment. Our study shows that DHA plays a role in mitigating AβPP-induced impairment in energy metabolism and inflammation by acting on tricarboxylic acid cycle, cholesterol biosynthesis pathway and fatty acid metabolism. The perturbations of these metabolic pathways by DHA in CHO-wt and CHO-AβPP695 cells shed further mechanistic insights on its neuroprotective actions.
    PLoS ONE 02/2014; 9(2):e90123. DOI:10.1371/journal.pone.0090123 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amyloid hypothesis has driven drug development strategies for Alzheimer's disease for over 20 years. We review why accumulation of amyloid-beta (Aß) oligomers is generally considered causal for synaptic loss and neurodegeneration in AD. We then elaborate on and update arguments for and against the amyloid hypothesis with new data and interpretations, and consider why the amyloid hypothesis may be failing therapeutically. We note several unresolved issues in the field including the presence of Aß deposition in cognitively normal individuals, the weak correlation between plaque load and cognition, questions regarding the biochemical nature, presence and role of Aß oligomeric assemblies in vivo, the bias of pre-clinical AD models toward the amyloid hypothesis and the poorly explained pathological heterogeneity and comorbidities associated with AD. We also illustrate how extensive data cited in support of the amyloid hypothesis, including genetic links to disease, can be interpreted independently of a role for Aß in AD. We conclude that it is essential to expand our view of pathogenesis beyond Aß and tau pathology and suggest several future directions for AD research, which we argue will be critical to understanding AD pathogenesis.
    09/2014; 2(1):135. DOI:10.1186/PREACCEPT-1342777270140958