Acoustic cavitation, bubble dynamics and sonoluminescence.

Drittes Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.
Ultrasonics Sonochemistry (Impact Factor: 3.52). 05/2007; 14(4):484-91. DOI: 10.1016/j.ultsonch.2006.09.017
Source: PubMed

ABSTRACT Basic facts on the dynamics of bubbles in water are presented. Measurements on the free and forced radial oscillations of single spherical bubbles and their acoustic (shock waves) and optic (luminescence) emissions are given in photographic series and diagrams. Bubble cloud patterns and their dynamics and light emission in standing acoustic fields are discussed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode.
    Ultrasonics Sonochemistry 05/2013; · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced desulfurizing flotation of low sulfur coal was investigated using sonoelectrochemical method. The supporting electrolyte used in this process was sodium chloride and the additive was anhydrous ethanol. The effects of treatment conditions on desulfurization were studied by a single-factor method. The conditions include anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature, sonoelectrolytic time and coal sample granulometry. The optimal experimental conditions achieved for anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature and sonoelectrolytic time are 1.7molL(-1), 5.1×10(-3)molL(-1), 10V, 70°C, 50min achieved for a -0.18mm coal sample. Optimal conditions cause a sulfur reduction of up to 69.4%. The raw and treated coals were analyzed by infrared spectroscopy and a chemical method. Pyritic sulfur, organic sulfur, ash as well as moisture are partially removed. The combination of high sulfur reduction, high yield, as well as high ash reduction was obtained in the newly developed method of enhanced flotation by sonoelectrochemistry. Ultrasound irradiation promotes electron transfer efficiency and increases clean coal yield.
    Ultrasonics Sonochemistry 03/2013; · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50mm and 0.29mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.
    Ultrasonics 04/2013; · 2.03 Impact Factor


Available from