Article

Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1.

Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St, Little Rock, AR 72205, USA.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6.34). 05/2007; 27(4):826-32. DOI: 10.1161/01.ATV.0000258795.75121.8a
Source: PubMed

ABSTRACT Carbamylated low-density lipoprotein (LDL), the most abundant modified LDL isoform in human blood, has been recently implicated in causing the atherosclerosis-prone injuries to endothelial cells in vitro and atherosclerosis in humans. This study was aimed at testing the hypothesis that carbamylated LDL acts via inducing monocyte adhesion to endothelial cells and determining the adhesion molecules responsible for the recruitment of monocytes.
Exposure of human coronary artery endothelial cells with carbamylated LDL but not native LDL caused U937 monocyte adhesion and the induction of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 adhesion molecules as measured by cell enzyme-linked immunosorbent assay. Silencing of intercellular adhesion molecule-1 by siRNA or its inhibition using neutralizing antibody resulted in decreased monocyte adhesion to the endothelial cells. Similar silencing or neutralizing of vascular cell adhesion molecule-1 alone did not have an effect but was shown to contribute to intercellular adhesion molecule-1 when tested simultaneously.
Taken together, these data provide evidence that intercellular adhesion molecule-1 in cooperation with vascular cell adhesion molecule-1 are essential for monocyte adhesion by carbamylated low-density lipoprotein-activated human vascular endothelial cells in vitro.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
    Mediators of Inflammation 01/2014; 2014:492873. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes.
    International Journal of Molecular Sciences 01/2014; 15(7):12807-12841. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbamylation describes a nonenzymatic posttranslational protein modification mediated by cyanate, a dissociation product of urea. When kidney function declines and urea accumulates, the burden of carbamylation naturally increases. Free amino acids may protect proteins from carbamylation, and protein carbamylation has been shown to increase in uremic patients with amino acid deficiencies. Carbamylation reactions are capable of altering the structure and functional properties of certain proteins and have been implicated directly in the underlying mechanisms of various disease conditions. A broad range of studies has demonstrated how the irreversible binding of urea-derived cyanate to proteins in the human body causes inappropriate cellular responses leading to adverse outcomes such as accelerated atherosclerosis and inflammation. Given carbamylation’s relationship to urea and the evidence that it contributes to disease pathogenesis, measurements of carbamylated proteins may serve as useful quantitative biomarkers of time-averaged urea concentrations while also offering risk assessment in patients with kidney disease. Moreover, the link between carbamylated proteins and disease pathophysiology creates an enticing therapeutic target for reducing the rate of carbamylation. This article reviews the biochemistry of the carbamylation reaction, its role in specific diseases, and the potential diagnostic and therapeutic implications of these findings based on recent advances.
    American Journal of Kidney Diseases 01/2014; · 5.29 Impact Factor

Full-text

Download
0 Downloads
Available from