Theoretical study of one- and two-photon absorption properties of octupolar D2d and D3 bipyridyl metal complexes.

State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, JiLin University, Changchun 130023, People's Republic of China.
The Journal of Physical Chemistry A (Impact Factor: 2.77). 03/2007; 111(7):1328-38. DOI: 10.1021/jp0669097
Source: PubMed

ABSTRACT The molecular equilibrium structures, electronic structures, and one- and two-photon absorption (TPA) properties of C2v (Zn(II), Fe(II) and Cu(I)) dipolar and D2d (Zn(II) and Cu(I)) and D3 (Zn(II)) octupolar metal complexes featuring different functionalized bipyridyl ligands have been studied by the ZINDO-SOS method. The calculated results show that one- and two-photon absorption properties of metal complexes are strongly influenced by the nature of the ligands (donor end groups and pi linkers) and metal ions as well as by the symmetry of the complexes. The length of the pi-conjugated backbone, the Lewis acidity of the metal ions, and the increase of ligand-to-metal ratio result in a substantial enhancement of the TPA cross sections of metal complexes. Substitution of C=N and N=N for C=C plays an important role in altering the maximum TPA wavelengths and the maximum TPA cross sections of metal complexes. Of them, the C=N substituted metal complexes have relatively large TPA cross sections. Replacing styryl with thienylvinyl makes the one-photon absorption wavelength red shift and at the same time leads to a great decrease of the maximum TPA cross sections of metal complexes. The possible reason is discussed. In the range 500-1250 nm, octupolar metal complexes exhibit intense TPAs and therefore are promising candidates for TPA materials.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of new hyperbranched polymers containing a 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine core unit and polyfluorene chain arms have been synthesized via Suzuki coupling, and characterized by NMR, IR and GPC. All the polymers exhibit good thermal stability with a high decomposition temperature. By changing the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine/fluorene ratio the UV-vis absorption and emission spectra can be partially tuned. It has been found that the polymers containing a low ratio of 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine units (P1-P3) have an absorption maximum around 385 nm, localized in the polyfluorene chain, and a shoulder around 425 nm ascribable to a charge transfer state involving the fluorene and the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine core. Increasing the molar ratio of the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine unit enhances the charge transfer band which becomes dominant for P4. The LUMO level of these polymers is relatively low due to the electron affinity of the triazine group. The polymers show dual emission, with a structured band in the blue (410-440 nm), attributed to the polyfluorene, and a broad band in the red (470-500 nm) associated with the charge transfer state. All the polymers exhibit two-photon absorption activity in the range of 660 to 900 nm with the maximum two-photon absorption (TPA) cross-section red-shifted from the corresponding linear absorption. The values of the TPA cross-sections vary from 1000 to 5000 GM, following the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine/fluorene ratio.
    Physical Chemistry Chemical Physics 03/2011; 13(19):8838-46. · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four structurally related iridium(III) and ruthenium(II) complexes bearing two polar terpyridyl-stilbene derived chromophores 4-(4-{2-[4-(methoxy)phenyl]ethenyl}phenyl)-2,2'-6',2''-terpyridine (ttpyeneanisole) and 4-(4-{2-[phenyl]ethenyl}phenyl)-2,2'-6',2''-terpyridine (tpystilbene) have been synthesised and characterised in the solid state and in solution. In the solid state, the dihedral angle subtending the pyridyl and tolyl groups of 27.1° in the Ir(III) complex [Ir(ttpyeneanisole)(2)]·3PF(6) is more acute than in the Ru(II) derivative [Ru(tpystilbene)(2)]·2PF(6) (35.5°), indicating the presence of a greater degree of π-delocalisation across the terpyridine unit in the former compound. Their luminescence properties in fluid solution have been investigated following both resonant and non-resonant excitation. We have shown that each of the complexes undergoes two-photon excitation when excited in the near infrared (740 to 820 nm), with two-photon absorption cross sections in the range 11-67 × 10(-50) cm(4) s photon(-1). The larger cross sections for the Ir(III) complexes reflect the differences observed in the solid state. This work therefore demonstrates that such complexes are promising as luminescent markers for 3D imaging and illustrates that simple functionalisation of the chromophores and the choice of metal can lead to marked enhancements in the two-photon cross sections (σ(2)) compared to those of simpler heteroleptic polypyridyl based derivatives.
    Dalton Transactions 10/2010; 39(45):10837-46. · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New complexes with six ferrocenyl (Fc) groups connected to Zn(II) or Cd(II) tris(2,2'-bipyridyl) cores are described. A thorough characterisation of their BPh4 (-) salts includes two single-crystal X-ray structures, highly unusual for such species with multiple, extended substituents. Intense, visible d(Fe(II) )→π* metal-to-ligand charge-transfer (MLCT) bands accompany the π→π* intraligand charge-transfer absorptions in the near UV region. Each complex shows a single, fully reversible Fe(III/II) wave when probed electrochemically. Molecular quadratic nonlinear optical (NLO) responses are determined by using hyper-Rayleigh scattering and Stark spectroscopy. The latter gives static first hyperpolarisabilities β0 reaching as high as approximately 10(-27) esu and generally increasing with π-conjugation extension. Z-scan cubic NLO measurements reveal high two-photon absorption cross-sections σ2 of up to 5400 GM in one case. DFT calculations reproduce the π-conjugation dependence of β0 , and TD-DFT predicts three transitions close in energy contributing to the MLCT bands. The lowest energy transition has octupolar character, whereas the other two are degenerate and dipolar in nature.
    Chemistry 03/2013; · 5.93 Impact Factor