Article

Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: part II. integrase inhibition.

Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 04/2007; 354(4):879-84. DOI: 10.1016/j.bbrc.2007.01.058
Source: PubMed

ABSTRACT We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC(50)s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A highly sensitive and specific LC-MS/MS method was developed to investigate the in vivo bio-transformation of oleuropein in rat. Rat feces and urine samples collected after oral administration were determined by liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative-ion mode. The assay procedure involves a simple liquid-liquid extraction of parent oleuropein and the metabolite from rat feces and urine with ethyl acetate. Chromatographic separation was operated with 0.1% formic acid aqueous and methanol in gradient program at a flow rate of 0.50 mL/min on an RP-C18 column with a total run time of 31 min. This method was successfully applied to simultaneous determination of oleuropein and its metabolites in rat feces and urine. De-glucosylation, hydrolysis, oxygenation and methylation were found to comprise the major metabolic pathway of oleuropein in rat gastrointestinal tract and three metabolites were absorbed into the blood circulatory system within 24 h after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.
    Biomedical Chromatography 04/2013; · 1.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various constituents of the olive tree (Olea europaea) have been traditionally used in the treatment of infection, inflammation, prevention of chronic diseases, cardiovascular disorders and cancer. The anticancer potential of dry olive leaf extract (DOLE) represents the net effect of multilevel interactions between different biologically active compounds from the extract, cancer cells and conventional therapy. In this context, it was of primary interest to evaluate the influence of DOLE on progression of the highly malignant, immuno- and chemoresistant type of skin cancer-melanoma. DOLE significantly inhibited proliferation and subsequently restricted clonogenicity of the B16 mouse melanoma cell line in vitro. Moreover, late phase tumor treatment with DOLE significantly reduced tumor volume in a syngeneic strain of mice. DOLE-treated B16 cells were blocked in the G(0) /G(1) phase of the cell cycle, underwent early apoptosis and died by late necrosis. At the molecular level, the dying process started as caspase dependent, but finalized as caspase independent. In concordance, overexpression of antiapoptotic members of the Bcl-2 family, Bcl-2 and Bcl-XL, and diminished expression of their natural antagonists, Bim and p53, were observed. Despite molecular suppression of the proapoptotic process, DOLE successfully promoted cell death mainly through disruption of cell membrane integrity and late caspase-independent fragmentation of genetic material. Taken together, the results of this study indicate that DOLE possesses strong antimelanoma potential. When DOLE was applied in combination with different chemotherapeutics, various outcomes, including synergy and antagonism, were observed. This requires caution in the use of the extract as a supplementary antitumor therapeutic.
    International Journal of Cancer 04/2011; 128(8):1955-65. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmaniasis, a protozoan parasitic disease that remains a major worldwide health problem with high endemicity in developing countries, is prevalent around the Mediterranean basin. High cost, systemic toxicity, and diminished efficacy due to development of parasite resistance are the serious drawbacks of current treatment options. Thus, identifying new, effective, and safer anti-leishmanial drug(s) is of paramount importance. Here we tested the anti-promastigote and anti-amastigote activity of five natural products, including oleuropein and hydroxytyrosol, present in olive tree leaves and olive mill wastewater. These products are recognized as low-cost starting materials rich in bioactive compounds, particularly biophenols. Oleuropein and hydroxytyrosol exhibited the best inhibitory effect among the natural products tested in both stationary and middle logarithmic phase promastigotes of L. infantum, L. donovani, and L. major. Similarly, oleuropein and hydroxytyrosol demonstrated the highest selectivity index ratio against L. donovani amastigotes that parasitize J774A.1 macrophages. Moreover, oleuropein was tested in vivo in an experimental visceral leishmaniasis model. L. donovani-infected BALB/c mice received intraperitoneal oleuropein a total of 14 times at intervals of every other day. Three days after treatment termination, the spleen parasitic burden was reduced >80%. Of interest, this effect of oleuropein persisted and was even enhanced 6 weeks after the termination of the treatment, as determined by parasite depletion of >95% in liver and spleen. These findings contribute to the potential development of natural products as effective drugs against parasites of the Leishmania genus, with low cost and diminished cytotoxicity.
    Phytomedicine: international journal of phytotherapy and phytopharmacology 12/2012; · 2.97 Impact Factor

Full-text (2 Sources)

View
3 Downloads
Available from
Sep 6, 2014