Article

Estradiol induces heparanase-1 expression and heparan sulphate proteoglycan degradation in human endometrium.

Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
Human Reproduction (Impact Factor: 4.67). 05/2007; 22(4):927-37. DOI: 10.1093/humrep/del483
Source: PubMed

ABSTRACT This study seeks to determine whether estrogen is able to regulate the expression of heparanase-1 (HPR1) in human endometrium.
HPR1 expression and heparan sulphate (HS) deposition in the endometrium collected in various menstrual phases were analysed by immunohistochemical and immunofluorescence staining, respectively. HPR1 expression in the endometrial cells unexposed or exposed to estradiol was analysed by using RT-PCR and luciferase reporter assay. HPR1 activity was analysed by using a novel enzyme-linked immunosorbent assay (ELISA). Cell surface HS levels were analysed by flow cytometry. Serum HPR1 activity in women receiving follicle-stimulating hormone (FSH) for IVF was measured by ELISA.
HPR1 expression was rarely detected in the endometrium in the early and mid-proliferative phases but was increased in the late proliferative phase and in the secretory phases. HPR1 expression was negatively associated with HS in the basement membrane (BM) of the endometrial glands. HPR1 gene expression, HPR1 promoter activity and HPR1 enzymatic activity were increased in the endometrial cells when exposed to 17beta-estradiol (E(2)), whereas cell surface HS levels showed a decrease which could be blocked by PI-88, an HPR1 inhibitor. Serum HPR1 levels were increased in women with moderately elevated blood estrogen levels after receiving FSH.
HPR1 is differentially expressed in the endometrium in different menstrual phases. Estrogen plays an important role in inducing HPR1 expression, subsequently leading to HS degradation on the endometrial cell surface and in the BM of the endometrium.

0 Bookmarks
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heparanase that was cloned from and is abundant in the placenta is implicated in cell invasion, tumor metastasis, and angiogenesis. Recently we have demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. Heparanase was shown to up-regulate tissue factor (TF) expression and interact with tissue factor pathway inhibitor (TFPI) on the cell surface, leading to dissociation of TFPI from the cell membrane of endothelial and tumor cells, resulting in increased cell surface coagulation activity. More recently, we have shown that heparanase directly enhances TF activity, resulting in increased factor Xa production and activation of the coagulation system. Data indicate increased levels and possible involvement of heparanase in vascular complications in pregnancy. Taking into account the prometastatic and proangiogenic functions of heparanase, overexpression in human malignancies, and abundance in platelets and placenta, its involvement in the coagulation machinery is an intriguing novel arena for further research.
    Rambam Maimonides medical journal. 01/2012; 3(1):e0002.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heparanase plays a key role in promoting tumor angiogenesis, vasiveness and metastasis. This predominant enzyme is primarily responsible f o r c l e a v i n g h e p a r i n s u l p h a t e , t h e m a i n polysaccharide constituent of extracellular matrix and basement membrane, thus having become a novel target of tumor therapy. It can prevent tumor growth and metastasis by inhibiting its expression and reducing its activity. This paper reviews the biological characteristics of heparanase as a target of tumor therapy, the significance in tumor progression and tumor therapies, and the prospect of its relating medicine in clinical applications.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heparanase, a β-D-endoglucuronidase abundant in platelets that was discovered 30 years ago, is an enzyme that cleaves heparan sulfate side chains on the cell surface and in the extracellular matrix. It was later recognized as being a pro-inflammatory and pro-metastatic protein. We had earlier demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. We had shown that heparanase up-regulated the expression of the blood coagulation initiator tissue factor (TF) and interacted with the tissue factor pathway inhibitor (TFPI) on the cell surface membrane of endothelial and tumor cells, leading to dissociation of TFPI and resulting in increased cell surface coagulation activity. Moreover, we have demonstrated that heparanase directly enhanced TF activity which led to increased factor Xa production and subsequent activation of the coagulation system. Recently, heparanase inhibitory peptides derived of TFPI-2 were demonstrated by us to inhibit heparanase procoagulant activity and attenuate sepsis in mouse models.
    Rambam Maimonides medical journal. 10/2014; 5(4):e0031.

Full-text (2 Sources)

Download
4 Downloads
Available from
Aug 8, 2014